Ordered states in the Kitaev-Heisenberg model: From 1D chains to 2D honeycomb
Abstract We study the ground state of the 1D Kitaev-Heisenberg (KH) model using the density-matrix renormalization group and Lanczos exact diagonalization methods. We obtain a rich ground-state phase diagram as a function of the ratio between Heisenberg (J = cosϕ) and Kitaev (K = sinϕ) interactions....
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4bd27e04ee6148e99dddc79b6e43aafd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:4bd27e04ee6148e99dddc79b6e43aafd |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:4bd27e04ee6148e99dddc79b6e43aafd2021-12-02T15:08:06ZOrdered states in the Kitaev-Heisenberg model: From 1D chains to 2D honeycomb10.1038/s41598-018-19960-42045-2322https://doaj.org/article/4bd27e04ee6148e99dddc79b6e43aafd2018-01-01T00:00:00Zhttps://doi.org/10.1038/s41598-018-19960-4https://doaj.org/toc/2045-2322Abstract We study the ground state of the 1D Kitaev-Heisenberg (KH) model using the density-matrix renormalization group and Lanczos exact diagonalization methods. We obtain a rich ground-state phase diagram as a function of the ratio between Heisenberg (J = cosϕ) and Kitaev (K = sinϕ) interactions. Depending on the ratio, the system exhibits four long-range ordered states: ferromagnetic-z, ferromagnetic-xy, staggered-xy, Néel-z, and two liquid states: Tomonaga-Luttinger liquid and spiral-xy. The two Kitaev points $${\boldsymbol{\phi }}{\boldsymbol{=}}\frac{{\boldsymbol{\pi }}}{{\bf{2}}}$$ ϕ = π 2 and $${\boldsymbol{\varphi }}{\boldsymbol{=}}\frac{{\bf{3}}{\boldsymbol{\pi }}}{{\bf{2}}}$$ φ = 3 π 2 are singular. The ϕ-dependent phase diagram is similar to that for the 2D honeycomb-lattice KH model. Remarkably, all the ordered states of the honeycomb-lattice KH model can be interpreted in terms of the coupled KH chains. We also discuss the magnetic structure of the K-intercalated RuCl3, a potential Kitaev material, in the framework of the 1D KH model. Furthermore, we demonstrate that the low-lying excitations of the 1D KH Hamiltonian can be explained within the combination of the known six-vertex model and spin-wave theory.Cliò Efthimia AgrapidisJeroen van den BrinkSatoshi NishimotoNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 8, Iss 1, Pp 1-18 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Cliò Efthimia Agrapidis Jeroen van den Brink Satoshi Nishimoto Ordered states in the Kitaev-Heisenberg model: From 1D chains to 2D honeycomb |
description |
Abstract We study the ground state of the 1D Kitaev-Heisenberg (KH) model using the density-matrix renormalization group and Lanczos exact diagonalization methods. We obtain a rich ground-state phase diagram as a function of the ratio between Heisenberg (J = cosϕ) and Kitaev (K = sinϕ) interactions. Depending on the ratio, the system exhibits four long-range ordered states: ferromagnetic-z, ferromagnetic-xy, staggered-xy, Néel-z, and two liquid states: Tomonaga-Luttinger liquid and spiral-xy. The two Kitaev points $${\boldsymbol{\phi }}{\boldsymbol{=}}\frac{{\boldsymbol{\pi }}}{{\bf{2}}}$$ ϕ = π 2 and $${\boldsymbol{\varphi }}{\boldsymbol{=}}\frac{{\bf{3}}{\boldsymbol{\pi }}}{{\bf{2}}}$$ φ = 3 π 2 are singular. The ϕ-dependent phase diagram is similar to that for the 2D honeycomb-lattice KH model. Remarkably, all the ordered states of the honeycomb-lattice KH model can be interpreted in terms of the coupled KH chains. We also discuss the magnetic structure of the K-intercalated RuCl3, a potential Kitaev material, in the framework of the 1D KH model. Furthermore, we demonstrate that the low-lying excitations of the 1D KH Hamiltonian can be explained within the combination of the known six-vertex model and spin-wave theory. |
format |
article |
author |
Cliò Efthimia Agrapidis Jeroen van den Brink Satoshi Nishimoto |
author_facet |
Cliò Efthimia Agrapidis Jeroen van den Brink Satoshi Nishimoto |
author_sort |
Cliò Efthimia Agrapidis |
title |
Ordered states in the Kitaev-Heisenberg model: From 1D chains to 2D honeycomb |
title_short |
Ordered states in the Kitaev-Heisenberg model: From 1D chains to 2D honeycomb |
title_full |
Ordered states in the Kitaev-Heisenberg model: From 1D chains to 2D honeycomb |
title_fullStr |
Ordered states in the Kitaev-Heisenberg model: From 1D chains to 2D honeycomb |
title_full_unstemmed |
Ordered states in the Kitaev-Heisenberg model: From 1D chains to 2D honeycomb |
title_sort |
ordered states in the kitaev-heisenberg model: from 1d chains to 2d honeycomb |
publisher |
Nature Portfolio |
publishDate |
2018 |
url |
https://doaj.org/article/4bd27e04ee6148e99dddc79b6e43aafd |
work_keys_str_mv |
AT clioefthimiaagrapidis orderedstatesinthekitaevheisenbergmodelfrom1dchainsto2dhoneycomb AT jeroenvandenbrink orderedstatesinthekitaevheisenbergmodelfrom1dchainsto2dhoneycomb AT satoshinishimoto orderedstatesinthekitaevheisenbergmodelfrom1dchainsto2dhoneycomb |
_version_ |
1718388249766920192 |