Sensory Afferent Renal Nerve Activated Gαi2 Subunit Proteins Mediate the Natriuretic, Sympathoinhibitory and Normotensive Responses to Peripheral Sodium Challenges

We have previously reported that brain Gαi2 subunit proteins are required to maintain sodium homeostasis and are endogenously upregulated in the hypothalamic paraventricular nucleus (PVN) in response to increased dietary salt intake to maintain a salt resistant phenotype in rats. However, the origin...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jesse D. Moreira, Kayla M. Nist, Casey Y. Carmichael, Jill T. Kuwabara, Richard D. Wainford
Formato: article
Lenguaje:EN
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://doaj.org/article/4c02f0509f544d89a07ab29ca54daea1
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4c02f0509f544d89a07ab29ca54daea1
record_format dspace
spelling oai:doaj.org-article:4c02f0509f544d89a07ab29ca54daea12021-12-01T18:14:25ZSensory Afferent Renal Nerve Activated Gαi2 Subunit Proteins Mediate the Natriuretic, Sympathoinhibitory and Normotensive Responses to Peripheral Sodium Challenges1664-042X10.3389/fphys.2021.771167https://doaj.org/article/4c02f0509f544d89a07ab29ca54daea12021-11-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fphys.2021.771167/fullhttps://doaj.org/toc/1664-042XWe have previously reported that brain Gαi2 subunit proteins are required to maintain sodium homeostasis and are endogenously upregulated in the hypothalamic paraventricular nucleus (PVN) in response to increased dietary salt intake to maintain a salt resistant phenotype in rats. However, the origin of the signal that drives the endogenous activation and up-regulation of PVN Gαi2 subunit protein signal transduction pathways is unknown. By central oligodeoxynucleotide (ODN) administration we show that the pressor responses to central acute administration and central infusion of sodium chloride occur independently of brain Gαi2 protein pathways. In response to an acute volume expansion, we demonstrate, via the use of selective afferent renal denervation (ADNX) and anteroventral third ventricle (AV3V) lesions, that the sensory afferent renal nerves, but not the sodium sensitive AV3V region, are mechanistically involved in Gαi2 protein mediated natriuresis to an acute volume expansion [peak natriuresis (μeq/min) sham AV3V: 43 ± 4 vs. AV3V 45 ± 4 vs. AV3V + Gαi2 ODN 25 ± 4, p < 0.05; sham ADNX: 43 ± 4 vs. ADNX 23 ± 6, AV3V + Gαi2 ODN 25 ± 3, p < 0.05]. Furthermore, in response to chronically elevated dietary sodium intake, endogenous up-regulation of PVN specific Gαi2 proteins does not involve the AV3V region and is mediated by the sensory afferent renal nerves to counter the development of the salt sensitivity of blood pressure (MAP [mmHg] 4% NaCl; Sham ADNX 124 ± 4 vs. ADNX 145 ± 4, p < 0.05; Sham AV3V 125 ± 4 vs. AV3V 121 ± 5). Additionally, the development of the salt sensitivity of blood pressure following central ODN-mediated Gαi2 protein down-regulation occurs independently of the actions of the brain angiotensin II type 1 receptor. Collectively, our data suggest that in response to alterations in whole body sodium the peripheral sensory afferent renal nerves, but not the central AV3V sodium sensitive region, evoke the up-regulation and activation of PVN Gαi2 protein gated pathways to maintain a salt resistant phenotype. As such, both the sensory afferent renal nerves and PVN Gαi2 protein gated pathways, represent potential targets for the treatment of the salt sensitivity of blood pressure.Jesse D. MoreiraJesse D. MoreiraKayla M. NistKayla M. NistCasey Y. CarmichaelCasey Y. CarmichaelJill T. KuwabaraJill T. KuwabaraRichard D. WainfordRichard D. WainfordFrontiers Media S.A.articlecentral Gαi2 proteinsafferent renal sympathetic nervessodium homeostasisblood pressurenatriuresisPhysiologyQP1-981ENFrontiers in Physiology, Vol 12 (2021)
institution DOAJ
collection DOAJ
language EN
topic central Gαi2 proteins
afferent renal sympathetic nerves
sodium homeostasis
blood pressure
natriuresis
Physiology
QP1-981
spellingShingle central Gαi2 proteins
afferent renal sympathetic nerves
sodium homeostasis
blood pressure
natriuresis
Physiology
QP1-981
Jesse D. Moreira
Jesse D. Moreira
Kayla M. Nist
Kayla M. Nist
Casey Y. Carmichael
Casey Y. Carmichael
Jill T. Kuwabara
Jill T. Kuwabara
Richard D. Wainford
Richard D. Wainford
Sensory Afferent Renal Nerve Activated Gαi2 Subunit Proteins Mediate the Natriuretic, Sympathoinhibitory and Normotensive Responses to Peripheral Sodium Challenges
description We have previously reported that brain Gαi2 subunit proteins are required to maintain sodium homeostasis and are endogenously upregulated in the hypothalamic paraventricular nucleus (PVN) in response to increased dietary salt intake to maintain a salt resistant phenotype in rats. However, the origin of the signal that drives the endogenous activation and up-regulation of PVN Gαi2 subunit protein signal transduction pathways is unknown. By central oligodeoxynucleotide (ODN) administration we show that the pressor responses to central acute administration and central infusion of sodium chloride occur independently of brain Gαi2 protein pathways. In response to an acute volume expansion, we demonstrate, via the use of selective afferent renal denervation (ADNX) and anteroventral third ventricle (AV3V) lesions, that the sensory afferent renal nerves, but not the sodium sensitive AV3V region, are mechanistically involved in Gαi2 protein mediated natriuresis to an acute volume expansion [peak natriuresis (μeq/min) sham AV3V: 43 ± 4 vs. AV3V 45 ± 4 vs. AV3V + Gαi2 ODN 25 ± 4, p < 0.05; sham ADNX: 43 ± 4 vs. ADNX 23 ± 6, AV3V + Gαi2 ODN 25 ± 3, p < 0.05]. Furthermore, in response to chronically elevated dietary sodium intake, endogenous up-regulation of PVN specific Gαi2 proteins does not involve the AV3V region and is mediated by the sensory afferent renal nerves to counter the development of the salt sensitivity of blood pressure (MAP [mmHg] 4% NaCl; Sham ADNX 124 ± 4 vs. ADNX 145 ± 4, p < 0.05; Sham AV3V 125 ± 4 vs. AV3V 121 ± 5). Additionally, the development of the salt sensitivity of blood pressure following central ODN-mediated Gαi2 protein down-regulation occurs independently of the actions of the brain angiotensin II type 1 receptor. Collectively, our data suggest that in response to alterations in whole body sodium the peripheral sensory afferent renal nerves, but not the central AV3V sodium sensitive region, evoke the up-regulation and activation of PVN Gαi2 protein gated pathways to maintain a salt resistant phenotype. As such, both the sensory afferent renal nerves and PVN Gαi2 protein gated pathways, represent potential targets for the treatment of the salt sensitivity of blood pressure.
format article
author Jesse D. Moreira
Jesse D. Moreira
Kayla M. Nist
Kayla M. Nist
Casey Y. Carmichael
Casey Y. Carmichael
Jill T. Kuwabara
Jill T. Kuwabara
Richard D. Wainford
Richard D. Wainford
author_facet Jesse D. Moreira
Jesse D. Moreira
Kayla M. Nist
Kayla M. Nist
Casey Y. Carmichael
Casey Y. Carmichael
Jill T. Kuwabara
Jill T. Kuwabara
Richard D. Wainford
Richard D. Wainford
author_sort Jesse D. Moreira
title Sensory Afferent Renal Nerve Activated Gαi2 Subunit Proteins Mediate the Natriuretic, Sympathoinhibitory and Normotensive Responses to Peripheral Sodium Challenges
title_short Sensory Afferent Renal Nerve Activated Gαi2 Subunit Proteins Mediate the Natriuretic, Sympathoinhibitory and Normotensive Responses to Peripheral Sodium Challenges
title_full Sensory Afferent Renal Nerve Activated Gαi2 Subunit Proteins Mediate the Natriuretic, Sympathoinhibitory and Normotensive Responses to Peripheral Sodium Challenges
title_fullStr Sensory Afferent Renal Nerve Activated Gαi2 Subunit Proteins Mediate the Natriuretic, Sympathoinhibitory and Normotensive Responses to Peripheral Sodium Challenges
title_full_unstemmed Sensory Afferent Renal Nerve Activated Gαi2 Subunit Proteins Mediate the Natriuretic, Sympathoinhibitory and Normotensive Responses to Peripheral Sodium Challenges
title_sort sensory afferent renal nerve activated gαi2 subunit proteins mediate the natriuretic, sympathoinhibitory and normotensive responses to peripheral sodium challenges
publisher Frontiers Media S.A.
publishDate 2021
url https://doaj.org/article/4c02f0509f544d89a07ab29ca54daea1
work_keys_str_mv AT jessedmoreira sensoryafferentrenalnerveactivatedgai2subunitproteinsmediatethenatriureticsympathoinhibitoryandnormotensiveresponsestoperipheralsodiumchallenges
AT jessedmoreira sensoryafferentrenalnerveactivatedgai2subunitproteinsmediatethenatriureticsympathoinhibitoryandnormotensiveresponsestoperipheralsodiumchallenges
AT kaylamnist sensoryafferentrenalnerveactivatedgai2subunitproteinsmediatethenatriureticsympathoinhibitoryandnormotensiveresponsestoperipheralsodiumchallenges
AT kaylamnist sensoryafferentrenalnerveactivatedgai2subunitproteinsmediatethenatriureticsympathoinhibitoryandnormotensiveresponsestoperipheralsodiumchallenges
AT caseyycarmichael sensoryafferentrenalnerveactivatedgai2subunitproteinsmediatethenatriureticsympathoinhibitoryandnormotensiveresponsestoperipheralsodiumchallenges
AT caseyycarmichael sensoryafferentrenalnerveactivatedgai2subunitproteinsmediatethenatriureticsympathoinhibitoryandnormotensiveresponsestoperipheralsodiumchallenges
AT jilltkuwabara sensoryafferentrenalnerveactivatedgai2subunitproteinsmediatethenatriureticsympathoinhibitoryandnormotensiveresponsestoperipheralsodiumchallenges
AT jilltkuwabara sensoryafferentrenalnerveactivatedgai2subunitproteinsmediatethenatriureticsympathoinhibitoryandnormotensiveresponsestoperipheralsodiumchallenges
AT richarddwainford sensoryafferentrenalnerveactivatedgai2subunitproteinsmediatethenatriureticsympathoinhibitoryandnormotensiveresponsestoperipheralsodiumchallenges
AT richarddwainford sensoryafferentrenalnerveactivatedgai2subunitproteinsmediatethenatriureticsympathoinhibitoryandnormotensiveresponsestoperipheralsodiumchallenges
_version_ 1718404689680138240