Functional Inequalities for Metric-Preserving Functions with Respect to Intrinsic Metrics of Hyperbolic Type
We obtain functional inequalities for functions which are metric-preserving with respect to one of the following intrinsic metrics in a canonical plane domain: hyperbolic metric or some restrictions of the triangular ratio metric, respectively, of a Barrlund metric. The subadditivity turns out to be...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4c1303d724df4bee87df3f6969860b31 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | We obtain functional inequalities for functions which are metric-preserving with respect to one of the following intrinsic metrics in a canonical plane domain: hyperbolic metric or some restrictions of the triangular ratio metric, respectively, of a Barrlund metric. The subadditivity turns out to be an essential property, being possessed by every function that is metric-preserving with respect to the hyperbolic metric and also by the composition with some specific function of every function that is metric-preserving with respect to some restriction of the triangular ratio metric or of a Barrlund metric. We partially answer an open question, proving that the hyperbolic arctangent is metric-preserving with respect to the restrictions of the triangular ratio metric on the unit disk to radial segments and to circles centered at origin. |
---|