Real-time streamflow forecasting: AI vs. Hydrologic insights
In this paper, we propose a set of simple benchmarks for the evaluation of data-based models for real-time streamflow forecasting, such as those developed with sophisticated Artificial Intelligence (AI) algorithms. The benchmarks are also data-based and provide context to judge incremental improveme...
Guardado en:
Autores principales: | Witold F. Krajewski, Ganesh R. Ghimire, Ibrahim Demir, Ricardo Mantilla |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4c2cfbdae0dd4b09a187c30eb60680c1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Modeling the impact of climate change on streamflow and major hydrological components of an Iranian Wadi system
por: Nariman Mahmoodi, et al.
Publicado: (2021) -
Intercomparing the robustness of machine learning models in simulation and forecasting of streamflow
por: Parthiban Loganathan, et al.
Publicado: (2021) -
Performance of HEC-HMS and SWAT to simulate streamflow in the sub-humid tropical Hemavathi catchment
por: N. C. Sanjay Shekar, et al.
Publicado: (2021) -
Modelling streamflow and sediment yield using Soil and Water Assessment Tool: a case study of Lidder watershed in Kashmir Himalayas, India
por: Sarvat Gull, et al.
Publicado: (2021) -
Investigation of Spatial and Temporal Variability of Hydrological Drought in Slovenia Using the Standardised Streamflow Index (SSI)
por: Lenka Zalokar, et al.
Publicado: (2021)