Deep Regression Neural Network for End-to-End Person Re-Identification
Person re-identification can be seen as a process of open set recognition. Usually, the deep learning models consider the person re-identification model as a classification model with a softmax layer. However, the softmax layer cannot be extended to unknown classes because of its closed nature, so t...
Guardado en:
Autores principales: | Yingchun Guo, Kunpeng Zhao, Xiaoke Hao, Ming Yu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4c366b2cc29b475aa17f9eebdd9aaf58 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Integrating Multiple Datasets and Machine Learning Algorithms for Satellite-Based Bathymetry in Seaports
por: Zhongqiang Wu, et al.
Publicado: (2021) -
End-to-End Estimation of Hand- and Wrist Forces From Raw Intramuscular EMG Signals Using LSTM Networks
por: Alexander E. Olsson, et al.
Publicado: (2021) -
Modeling of Indonesia Composite Index using Artificial Neural Network and Multivariate Adaptive Regression Spline (retracted)
por: Mutia Yollanda, et al.
Publicado: (2019) -
Vector Auto-Regressive Deep Neural Network: A Data-Driven Deep Learning-Based Directed Functional Connectivity Estimation Toolbox
por: Takuto Okuno, et al.
Publicado: (2021) -
Prediction of Compression Index of Marine clay Using Artificial Neural Network and Multilinear Regression Models
por: Ramachandiran Saisubramanian, et al.
Publicado: (2021)