Network Intrusion Detection Based on Extended RBF Neural Network With Offline Reinforcement Learning
Network intrusion detection focuses on classifying network traffic as either normal or attack carrier. The classification is based on information extracted from the network flow packets. This is a complex classification problem with unbalanced datasets and noisy data. This work extends the classic r...
Enregistré dans:
Auteurs principaux: | Manuel Lopez-Martin, Antonio Sanchez-Esguevillas, Juan Ignacio Arribas, Belen Carro |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/4c5892a1fbab46b99d8583544066a80e |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Feature reduction using a RBF network for classification of learning styles in first year engineering students
par: Velez-Langs,Oswaldo
Publié: (2014) -
Intercept the Cloud Network From Brute Force and DDoS Attacks via Intrusion Detection and Prevention System
par: Muhammad Nadeem, et autres
Publié: (2021) -
Intrusion detection for network based cloud computing by custom RC-NN and optimization
par: T. Thilagam, et autres
Publié: (2021) -
Prediction of Energy Transmission Spectrum of Layered Periodic Structures by Neural Networks
par: LIU Chenxu, et autres
Publié: (2021) -
Trustworthy Intrusion Detection in E-Healthcare Systems
par: Faiza Akram, et autres
Publié: (2021)