Network Intrusion Detection Based on Extended RBF Neural Network With Offline Reinforcement Learning
Network intrusion detection focuses on classifying network traffic as either normal or attack carrier. The classification is based on information extracted from the network flow packets. This is a complex classification problem with unbalanced datasets and noisy data. This work extends the classic r...
Guardado en:
Autores principales: | Manuel Lopez-Martin, Antonio Sanchez-Esguevillas, Juan Ignacio Arribas, Belen Carro |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4c5892a1fbab46b99d8583544066a80e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Feature reduction using a RBF network for classification of learning styles in first year engineering students
por: Velez-Langs,Oswaldo
Publicado: (2014) -
Intercept the Cloud Network From Brute Force and DDoS Attacks via Intrusion Detection and Prevention System
por: Muhammad Nadeem, et al.
Publicado: (2021) -
Intrusion detection for network based cloud computing by custom RC-NN and optimization
por: T. Thilagam, et al.
Publicado: (2021) -
Prediction of Energy Transmission Spectrum of Layered Periodic Structures by Neural Networks
por: LIU Chenxu, et al.
Publicado: (2021) -
Trustworthy Intrusion Detection in E-Healthcare Systems
por: Faiza Akram, et al.
Publicado: (2021)