Graphene-Based Nanoparticles as Potential Treatment Options for Parkinson’s Disease: A Molecular Dynamics Study

Ehsan Alimohammadi1 *,* Mohammad Khedri2 *,* Ahmad Miri Jahromi,3 Reza Maleki,4 Milad Rezaian5 1Neurosurgery Department, Kermanshah University of Medical Sciences, Kermanshah, Iran; 2Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591634311, Iran;...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Alimohammadi E, Khedri M, Miri Jahromi A, Maleki R, Rezaian M
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2020
Materias:
Acceso en línea:https://doaj.org/article/4c5d27800dc146e7a035a35350cb76e3
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4c5d27800dc146e7a035a35350cb76e3
record_format dspace
spelling oai:doaj.org-article:4c5d27800dc146e7a035a35350cb76e32021-12-02T12:41:12ZGraphene-Based Nanoparticles as Potential Treatment Options for Parkinson’s Disease: A Molecular Dynamics Study1178-2013https://doaj.org/article/4c5d27800dc146e7a035a35350cb76e32020-09-01T00:00:00Zhttps://www.dovepress.com/graphene-based-nanoparticles-as-potential-treatment-options-for-parkin-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Ehsan Alimohammadi1 *,* Mohammad Khedri2 *,* Ahmad Miri Jahromi,3 Reza Maleki,4 Milad Rezaian5 1Neurosurgery Department, Kermanshah University of Medical Sciences, Kermanshah, Iran; 2Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591634311, Iran; 3Department of Petroleum Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591634311, Iran; 4Department of Chemical Engineering, Sharif University of Technology, Tehran, Iran; 5Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran*These authors contributed equally to this workCorrespondence: Reza MalekiDepartment of Chemical Engineering, Sharif University of Technology, Tehran, IranEmail Rezamaleki96@gmail.comIntroduction: The study of abnormal aggregation of proteins in different tissues of the body has recently earned great attention from researchers in various fields of science. Concerning neurological diseases, for instance, the accumulation of amyloid fibrils can contribute to Parkinson’s disease, a progressively severe neurodegenerative disorder. The most prominent features of this disease are the degeneration of neurons in the substantia nigra and accumulation of α-synuclein aggregates, especially in the brainstem, spinal cord, and cortical areas. Dopamine replacement therapies and other medications have reduced motor impairment and had positive consequences on patients’ quality of life. However, if these medications are stopped, symptoms of the disease will recur even more severely. Therefore, the improvement of therapies targeting more basic mechanisms like prevention of amyloid formation seems to be critical. It has been shown that the interactions between monolayers like graphene and amyloids could prevent their fibrillation.Methods: For the first time, the impact of four types of last-generation graphene-based nanostructures on the prevention of α-synuclein amyloid fibrillation was investigated in this study by using molecular dynamics simulation tools.Results: Although all monolayers were shown to prevent amyloid fibrillation, nitrogen-doped graphene (N-Graphene) caused the most instability in the secondary structure of α-synuclein amyloids. Moreover, among the four monolayers, N-Graphene was shown to present the highest absolute value of interaction energy, the lowest contact level of amyloid particles, the highest number of hydrogen bonds between water and amyloid molecules, the highest instability caused in α-synuclein particles, and the most significant decrease in the compactness of α-synuclein protein.Discussion: Ultimately, it was concluded that N-Graphene could be the most effective monolayer to disrupt amyloid fibrillation, and consequently, prevent the progression of Parkinson’s disease.Keywords: α-synuclein, amyloid, graphene, Parkinson’s disease, molecular dynamicsAlimohammadi EKhedri MMiri Jahromi AMaleki RRezaian MDove Medical Pressarticleα-synucleinamyloidgrapheneparkinson’s diseasemolecular dynamicsMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 15, Pp 6887-6903 (2020)
institution DOAJ
collection DOAJ
language EN
topic α-synuclein
amyloid
graphene
parkinson’s disease
molecular dynamics
Medicine (General)
R5-920
spellingShingle α-synuclein
amyloid
graphene
parkinson’s disease
molecular dynamics
Medicine (General)
R5-920
Alimohammadi E
Khedri M
Miri Jahromi A
Maleki R
Rezaian M
Graphene-Based Nanoparticles as Potential Treatment Options for Parkinson’s Disease: A Molecular Dynamics Study
description Ehsan Alimohammadi1 *,* Mohammad Khedri2 *,* Ahmad Miri Jahromi,3 Reza Maleki,4 Milad Rezaian5 1Neurosurgery Department, Kermanshah University of Medical Sciences, Kermanshah, Iran; 2Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591634311, Iran; 3Department of Petroleum Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591634311, Iran; 4Department of Chemical Engineering, Sharif University of Technology, Tehran, Iran; 5Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran*These authors contributed equally to this workCorrespondence: Reza MalekiDepartment of Chemical Engineering, Sharif University of Technology, Tehran, IranEmail Rezamaleki96@gmail.comIntroduction: The study of abnormal aggregation of proteins in different tissues of the body has recently earned great attention from researchers in various fields of science. Concerning neurological diseases, for instance, the accumulation of amyloid fibrils can contribute to Parkinson’s disease, a progressively severe neurodegenerative disorder. The most prominent features of this disease are the degeneration of neurons in the substantia nigra and accumulation of α-synuclein aggregates, especially in the brainstem, spinal cord, and cortical areas. Dopamine replacement therapies and other medications have reduced motor impairment and had positive consequences on patients’ quality of life. However, if these medications are stopped, symptoms of the disease will recur even more severely. Therefore, the improvement of therapies targeting more basic mechanisms like prevention of amyloid formation seems to be critical. It has been shown that the interactions between monolayers like graphene and amyloids could prevent their fibrillation.Methods: For the first time, the impact of four types of last-generation graphene-based nanostructures on the prevention of α-synuclein amyloid fibrillation was investigated in this study by using molecular dynamics simulation tools.Results: Although all monolayers were shown to prevent amyloid fibrillation, nitrogen-doped graphene (N-Graphene) caused the most instability in the secondary structure of α-synuclein amyloids. Moreover, among the four monolayers, N-Graphene was shown to present the highest absolute value of interaction energy, the lowest contact level of amyloid particles, the highest number of hydrogen bonds between water and amyloid molecules, the highest instability caused in α-synuclein particles, and the most significant decrease in the compactness of α-synuclein protein.Discussion: Ultimately, it was concluded that N-Graphene could be the most effective monolayer to disrupt amyloid fibrillation, and consequently, prevent the progression of Parkinson’s disease.Keywords: α-synuclein, amyloid, graphene, Parkinson’s disease, molecular dynamics
format article
author Alimohammadi E
Khedri M
Miri Jahromi A
Maleki R
Rezaian M
author_facet Alimohammadi E
Khedri M
Miri Jahromi A
Maleki R
Rezaian M
author_sort Alimohammadi E
title Graphene-Based Nanoparticles as Potential Treatment Options for Parkinson’s Disease: A Molecular Dynamics Study
title_short Graphene-Based Nanoparticles as Potential Treatment Options for Parkinson’s Disease: A Molecular Dynamics Study
title_full Graphene-Based Nanoparticles as Potential Treatment Options for Parkinson’s Disease: A Molecular Dynamics Study
title_fullStr Graphene-Based Nanoparticles as Potential Treatment Options for Parkinson’s Disease: A Molecular Dynamics Study
title_full_unstemmed Graphene-Based Nanoparticles as Potential Treatment Options for Parkinson’s Disease: A Molecular Dynamics Study
title_sort graphene-based nanoparticles as potential treatment options for parkinson’s disease: a molecular dynamics study
publisher Dove Medical Press
publishDate 2020
url https://doaj.org/article/4c5d27800dc146e7a035a35350cb76e3
work_keys_str_mv AT alimohammadie graphenebasednanoparticlesaspotentialtreatmentoptionsforparkinsonrsquosdiseaseamoleculardynamicsstudy
AT khedrim graphenebasednanoparticlesaspotentialtreatmentoptionsforparkinsonrsquosdiseaseamoleculardynamicsstudy
AT mirijahromia graphenebasednanoparticlesaspotentialtreatmentoptionsforparkinsonrsquosdiseaseamoleculardynamicsstudy
AT malekir graphenebasednanoparticlesaspotentialtreatmentoptionsforparkinsonrsquosdiseaseamoleculardynamicsstudy
AT rezaianm graphenebasednanoparticlesaspotentialtreatmentoptionsforparkinsonrsquosdiseaseamoleculardynamicsstudy
_version_ 1718393737274458112