Protein fragments: functional and structural roles of their coevolution networks.
Small protein fragments, and not just residues, can be used as basic building blocks to reconstruct networks of coevolved amino acids in proteins. Fragments often enter in physical contact one with the other and play a major biological role in the protein. The nature of these interactions might be m...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2012
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4c6178192fe4479092d3b2f032843345 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:4c6178192fe4479092d3b2f032843345 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:4c6178192fe4479092d3b2f0328433452021-11-18T08:10:06ZProtein fragments: functional and structural roles of their coevolution networks.1932-620310.1371/journal.pone.0048124https://doaj.org/article/4c6178192fe4479092d3b2f0328433452012-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23139761/pdf/?tool=EBIhttps://doaj.org/toc/1932-6203Small protein fragments, and not just residues, can be used as basic building blocks to reconstruct networks of coevolved amino acids in proteins. Fragments often enter in physical contact one with the other and play a major biological role in the protein. The nature of these interactions might be multiple and spans beyond binding specificity, allosteric regulation and folding constraints. Indeed, coevolving fragments are indicators of important information explaining folding intermediates, peptide assembly, key mutations with known roles in genetic diseases, distinguished subfamily-dependent motifs and differentiated evolutionary pressures on protein regions. Coevolution analysis detects networks of fragments interaction and highlights a high order organization of fragments demonstrating the importance of studying at a deeper level this structure. We demonstrate that it can be applied to protein families that are highly conserved or represented by few sequences, enlarging in this manner, the class of proteins where coevolution analysis can be performed and making large-scale coevolution studies a feasible goal.Linda DibAlessandra CarbonePublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 7, Iss 11, p e48124 (2012) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Linda Dib Alessandra Carbone Protein fragments: functional and structural roles of their coevolution networks. |
description |
Small protein fragments, and not just residues, can be used as basic building blocks to reconstruct networks of coevolved amino acids in proteins. Fragments often enter in physical contact one with the other and play a major biological role in the protein. The nature of these interactions might be multiple and spans beyond binding specificity, allosteric regulation and folding constraints. Indeed, coevolving fragments are indicators of important information explaining folding intermediates, peptide assembly, key mutations with known roles in genetic diseases, distinguished subfamily-dependent motifs and differentiated evolutionary pressures on protein regions. Coevolution analysis detects networks of fragments interaction and highlights a high order organization of fragments demonstrating the importance of studying at a deeper level this structure. We demonstrate that it can be applied to protein families that are highly conserved or represented by few sequences, enlarging in this manner, the class of proteins where coevolution analysis can be performed and making large-scale coevolution studies a feasible goal. |
format |
article |
author |
Linda Dib Alessandra Carbone |
author_facet |
Linda Dib Alessandra Carbone |
author_sort |
Linda Dib |
title |
Protein fragments: functional and structural roles of their coevolution networks. |
title_short |
Protein fragments: functional and structural roles of their coevolution networks. |
title_full |
Protein fragments: functional and structural roles of their coevolution networks. |
title_fullStr |
Protein fragments: functional and structural roles of their coevolution networks. |
title_full_unstemmed |
Protein fragments: functional and structural roles of their coevolution networks. |
title_sort |
protein fragments: functional and structural roles of their coevolution networks. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2012 |
url |
https://doaj.org/article/4c6178192fe4479092d3b2f032843345 |
work_keys_str_mv |
AT lindadib proteinfragmentsfunctionalandstructuralrolesoftheircoevolutionnetworks AT alessandracarbone proteinfragmentsfunctionalandstructuralrolesoftheircoevolutionnetworks |
_version_ |
1718422104197562368 |