Quantum Simulation of Antiferromagnetic Heisenberg Chain with Gate-Defined Quantum Dots

Quantum-mechanical correlations of interacting fermions result in the emergence of exotic phases. Magnetic phases naturally arise in the Mott-insulator regime of the Fermi-Hubbard model, where charges are localized and the spin degree of freedom remains. In this regime, the occurrence of phenomena s...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: C. J. van Diepen, T.-K. Hsiao, U. Mukhopadhyay, C. Reichl, W. Wegscheider, L. M. K. Vandersypen
Formato: article
Lenguaje:EN
Publicado: American Physical Society 2021
Materias:
Acceso en línea:https://doaj.org/article/4c7554ec1382460b9998b6132b72796f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4c7554ec1382460b9998b6132b72796f
record_format dspace
spelling oai:doaj.org-article:4c7554ec1382460b9998b6132b72796f2021-11-04T14:31:29ZQuantum Simulation of Antiferromagnetic Heisenberg Chain with Gate-Defined Quantum Dots10.1103/PhysRevX.11.0410252160-3308https://doaj.org/article/4c7554ec1382460b9998b6132b72796f2021-11-01T00:00:00Zhttp://doi.org/10.1103/PhysRevX.11.041025http://doi.org/10.1103/PhysRevX.11.041025https://doaj.org/toc/2160-3308Quantum-mechanical correlations of interacting fermions result in the emergence of exotic phases. Magnetic phases naturally arise in the Mott-insulator regime of the Fermi-Hubbard model, where charges are localized and the spin degree of freedom remains. In this regime, the occurrence of phenomena such as resonating valence bonds, frustrated magnetism, and spin liquids is predicted. Quantum systems with engineered Hamiltonians can be used as simulators of such spin physics to provide insights beyond the capabilities of analytical methods and classical computers. To be useful, methods for the preparation of intricate many-body spin states and access to relevant observables are required. Here, we show the quantum simulation of magnetism in the Mott-insulator regime with a linear quantum-dot array. We characterize the energy spectrum for a Heisenberg spin chain, from which we can identify when the conditions for homogeneous exchange couplings are met. Next, we study the multispin coherence with global exchange oscillations in both the singlet and triplet subspace of the Heisenberg Hamiltonian. Last, we adiabatically prepare the low-energy global singlet of the homogeneous spin chain and probe it with two-spin singlet-triplet measurements on each nearest-neighbor pair and the correlations therein. The methods and control presented here open new opportunities for the simulation of quantum magnetism benefiting from the flexibility in tuning and layout of gate-defined quantum-dot arrays.C. J. van DiepenT.-K. HsiaoU. MukhopadhyayC. ReichlW. WegscheiderL. M. K. VandersypenAmerican Physical SocietyarticlePhysicsQC1-999ENPhysical Review X, Vol 11, Iss 4, p 041025 (2021)
institution DOAJ
collection DOAJ
language EN
topic Physics
QC1-999
spellingShingle Physics
QC1-999
C. J. van Diepen
T.-K. Hsiao
U. Mukhopadhyay
C. Reichl
W. Wegscheider
L. M. K. Vandersypen
Quantum Simulation of Antiferromagnetic Heisenberg Chain with Gate-Defined Quantum Dots
description Quantum-mechanical correlations of interacting fermions result in the emergence of exotic phases. Magnetic phases naturally arise in the Mott-insulator regime of the Fermi-Hubbard model, where charges are localized and the spin degree of freedom remains. In this regime, the occurrence of phenomena such as resonating valence bonds, frustrated magnetism, and spin liquids is predicted. Quantum systems with engineered Hamiltonians can be used as simulators of such spin physics to provide insights beyond the capabilities of analytical methods and classical computers. To be useful, methods for the preparation of intricate many-body spin states and access to relevant observables are required. Here, we show the quantum simulation of magnetism in the Mott-insulator regime with a linear quantum-dot array. We characterize the energy spectrum for a Heisenberg spin chain, from which we can identify when the conditions for homogeneous exchange couplings are met. Next, we study the multispin coherence with global exchange oscillations in both the singlet and triplet subspace of the Heisenberg Hamiltonian. Last, we adiabatically prepare the low-energy global singlet of the homogeneous spin chain and probe it with two-spin singlet-triplet measurements on each nearest-neighbor pair and the correlations therein. The methods and control presented here open new opportunities for the simulation of quantum magnetism benefiting from the flexibility in tuning and layout of gate-defined quantum-dot arrays.
format article
author C. J. van Diepen
T.-K. Hsiao
U. Mukhopadhyay
C. Reichl
W. Wegscheider
L. M. K. Vandersypen
author_facet C. J. van Diepen
T.-K. Hsiao
U. Mukhopadhyay
C. Reichl
W. Wegscheider
L. M. K. Vandersypen
author_sort C. J. van Diepen
title Quantum Simulation of Antiferromagnetic Heisenberg Chain with Gate-Defined Quantum Dots
title_short Quantum Simulation of Antiferromagnetic Heisenberg Chain with Gate-Defined Quantum Dots
title_full Quantum Simulation of Antiferromagnetic Heisenberg Chain with Gate-Defined Quantum Dots
title_fullStr Quantum Simulation of Antiferromagnetic Heisenberg Chain with Gate-Defined Quantum Dots
title_full_unstemmed Quantum Simulation of Antiferromagnetic Heisenberg Chain with Gate-Defined Quantum Dots
title_sort quantum simulation of antiferromagnetic heisenberg chain with gate-defined quantum dots
publisher American Physical Society
publishDate 2021
url https://doaj.org/article/4c7554ec1382460b9998b6132b72796f
work_keys_str_mv AT cjvandiepen quantumsimulationofantiferromagneticheisenbergchainwithgatedefinedquantumdots
AT tkhsiao quantumsimulationofantiferromagneticheisenbergchainwithgatedefinedquantumdots
AT umukhopadhyay quantumsimulationofantiferromagneticheisenbergchainwithgatedefinedquantumdots
AT creichl quantumsimulationofantiferromagneticheisenbergchainwithgatedefinedquantumdots
AT wwegscheider quantumsimulationofantiferromagneticheisenbergchainwithgatedefinedquantumdots
AT lmkvandersypen quantumsimulationofantiferromagneticheisenbergchainwithgatedefinedquantumdots
_version_ 1718444836400398336