Evaluating machine learning methodologies for identification of cancer driver genes
Abstract Cancer is driven by distinctive sorts of changes and basic variations in genes. Recognizing cancer driver genes is basic for accurate oncological analysis. Numerous methodologies to distinguish and identify drivers presently exist, but efficient tools to combine and optimize them on huge da...
Guardado en:
Autores principales: | Sharaf J. Malebary, Yaser Daanial Khan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4c75836bc7dc4a73b34571eaaf972088 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Identification of stress response proteins through fusion of machine learning models and statistical paradigms
por: Ebraheem Alzahrani, et al.
Publicado: (2021) -
Identification of druggable cancer driver genes amplified across TCGA datasets.
por: Ying Chen, et al.
Publicado: (2014) -
Comparison of machine-learning methodologies for accurate diagnosis of sepsis using microarray gene expression data.
por: Dominik Schaack, et al.
Publicado: (2021) -
GVES: machine learning model for identification of prognostic genes with a small dataset
por: Soohyun Ko, et al.
Publicado: (2021) -
Drivers of harmful algal blooms in coastal areas of Eastern Mediterranean: a machine learning methodological approach
por: Androniki Tamvakis, et al.
Publicado: (2021)