Umbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomes Combined Pluronic F127 Hydrogel Promote Chronic Diabetic Wound Healing and Complete Skin Regeneration

Jiayi Yang,1,* Zhiyi Chen,1,* Daoyan Pan,1,* Huaizhi Li,1 Jie Shen1,2 1Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, People’s Republic of China; 2Shunde Hospital of Southern Medical University, Shunde, People’...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yang J, Chen Z, Pan D, Li H, Shen J
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2020
Materias:
Acceso en línea:https://doaj.org/article/4c84b4fb588b4d969d9acb476392e564
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4c84b4fb588b4d969d9acb476392e564
record_format dspace
spelling oai:doaj.org-article:4c84b4fb588b4d969d9acb476392e5642021-12-02T09:28:55ZUmbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomes Combined Pluronic F127 Hydrogel Promote Chronic Diabetic Wound Healing and Complete Skin Regeneration1178-2013https://doaj.org/article/4c84b4fb588b4d969d9acb476392e5642020-08-01T00:00:00Zhttps://www.dovepress.com/umbilical-cord-derived-mesenchymal-stem-cell-derived-exosomes-combined-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Jiayi Yang,1,* Zhiyi Chen,1,* Daoyan Pan,1,* Huaizhi Li,1 Jie Shen1,2 1Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, People’s Republic of China; 2Shunde Hospital of Southern Medical University, Shunde, People’s Republic of China*These authors contributed equally to this workCorrespondence: Jie Shen; Daoyan PanDepartment of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, People’s Republic of ChinaEmail shenjiedr@163.com; pdy4266@126.comPurpose: Chronic refractory wounds are a multifactorial comorbidity of diabetes mellitus with the characteristic of impaired vascular networks. Currently, there is a lack of effective treatments for such wounds. Various types of mesenchymal stem cell-derived exosomes (MSC-exos) have been shown to exert multiple therapeutic effects on skin regeneration. We aimed to determine whether a constructed combination of human umbilical cord MSC (hUCMSC)-derived exosomes (hUCMSC-exos) and Pluronic F-127 (PF-127) hydrogel could improve wound healing.Materials and Methods: We topically applied human umbilical cord-derived MSC (hUCMSC)-derived exosomes (hUCMSC-exos) encapsulated in a thermosensitive PF-127 hydrogel to a full-thickness cutaneous wound in a streptozotocin-induced diabetic rat model. The material properties and wound healing ability of the hydrogel and cellular responses were analyzed.Results: Compared with hUCMSC-exos, PF-127-only or control treatment, the combination of PF-127 and hUCMSC-exos resulted in a significantly accelerated wound closure rate, increased expression of CD31 and Ki67, enhanced regeneration of granulation tissue and upregulated expression of vascular endothelial growth factor (VEGF) and factor transforming growth factor beta-1 (TGFβ-1).Conclusion: The efficient delivery of hUCMSC-exos in PF-127 gel and improved exosome ability could promote diabetic wound healing. Thus, this biomaterial-based exosome therapy may represent a new therapeutic approach for cutaneous regeneration of chronic wounds.Keywords: angiogenesis, diabetes wound, exosomes, mesenchymal stem cells, thermoresponsive hydrogelsYang JChen ZPan DLi HShen JDove Medical Pressarticleangiogenesisdiabetes woundexosomesmesenchymal stem cellsthermoresponsive hydrogelsMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 15, Pp 5911-5926 (2020)
institution DOAJ
collection DOAJ
language EN
topic angiogenesis
diabetes wound
exosomes
mesenchymal stem cells
thermoresponsive hydrogels
Medicine (General)
R5-920
spellingShingle angiogenesis
diabetes wound
exosomes
mesenchymal stem cells
thermoresponsive hydrogels
Medicine (General)
R5-920
Yang J
Chen Z
Pan D
Li H
Shen J
Umbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomes Combined Pluronic F127 Hydrogel Promote Chronic Diabetic Wound Healing and Complete Skin Regeneration
description Jiayi Yang,1,* Zhiyi Chen,1,* Daoyan Pan,1,* Huaizhi Li,1 Jie Shen1,2 1Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, People’s Republic of China; 2Shunde Hospital of Southern Medical University, Shunde, People’s Republic of China*These authors contributed equally to this workCorrespondence: Jie Shen; Daoyan PanDepartment of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, People’s Republic of ChinaEmail shenjiedr@163.com; pdy4266@126.comPurpose: Chronic refractory wounds are a multifactorial comorbidity of diabetes mellitus with the characteristic of impaired vascular networks. Currently, there is a lack of effective treatments for such wounds. Various types of mesenchymal stem cell-derived exosomes (MSC-exos) have been shown to exert multiple therapeutic effects on skin regeneration. We aimed to determine whether a constructed combination of human umbilical cord MSC (hUCMSC)-derived exosomes (hUCMSC-exos) and Pluronic F-127 (PF-127) hydrogel could improve wound healing.Materials and Methods: We topically applied human umbilical cord-derived MSC (hUCMSC)-derived exosomes (hUCMSC-exos) encapsulated in a thermosensitive PF-127 hydrogel to a full-thickness cutaneous wound in a streptozotocin-induced diabetic rat model. The material properties and wound healing ability of the hydrogel and cellular responses were analyzed.Results: Compared with hUCMSC-exos, PF-127-only or control treatment, the combination of PF-127 and hUCMSC-exos resulted in a significantly accelerated wound closure rate, increased expression of CD31 and Ki67, enhanced regeneration of granulation tissue and upregulated expression of vascular endothelial growth factor (VEGF) and factor transforming growth factor beta-1 (TGFβ-1).Conclusion: The efficient delivery of hUCMSC-exos in PF-127 gel and improved exosome ability could promote diabetic wound healing. Thus, this biomaterial-based exosome therapy may represent a new therapeutic approach for cutaneous regeneration of chronic wounds.Keywords: angiogenesis, diabetes wound, exosomes, mesenchymal stem cells, thermoresponsive hydrogels
format article
author Yang J
Chen Z
Pan D
Li H
Shen J
author_facet Yang J
Chen Z
Pan D
Li H
Shen J
author_sort Yang J
title Umbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomes Combined Pluronic F127 Hydrogel Promote Chronic Diabetic Wound Healing and Complete Skin Regeneration
title_short Umbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomes Combined Pluronic F127 Hydrogel Promote Chronic Diabetic Wound Healing and Complete Skin Regeneration
title_full Umbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomes Combined Pluronic F127 Hydrogel Promote Chronic Diabetic Wound Healing and Complete Skin Regeneration
title_fullStr Umbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomes Combined Pluronic F127 Hydrogel Promote Chronic Diabetic Wound Healing and Complete Skin Regeneration
title_full_unstemmed Umbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomes Combined Pluronic F127 Hydrogel Promote Chronic Diabetic Wound Healing and Complete Skin Regeneration
title_sort umbilical cord-derived mesenchymal stem cell-derived exosomes combined pluronic f127 hydrogel promote chronic diabetic wound healing and complete skin regeneration
publisher Dove Medical Press
publishDate 2020
url https://doaj.org/article/4c84b4fb588b4d969d9acb476392e564
work_keys_str_mv AT yangj umbilicalcordderivedmesenchymalstemcellderivedexosomescombinedpluronicf127hydrogelpromotechronicdiabeticwoundhealingandcompleteskinregeneration
AT chenz umbilicalcordderivedmesenchymalstemcellderivedexosomescombinedpluronicf127hydrogelpromotechronicdiabeticwoundhealingandcompleteskinregeneration
AT pand umbilicalcordderivedmesenchymalstemcellderivedexosomescombinedpluronicf127hydrogelpromotechronicdiabeticwoundhealingandcompleteskinregeneration
AT lih umbilicalcordderivedmesenchymalstemcellderivedexosomescombinedpluronicf127hydrogelpromotechronicdiabeticwoundhealingandcompleteskinregeneration
AT shenj umbilicalcordderivedmesenchymalstemcellderivedexosomescombinedpluronicf127hydrogelpromotechronicdiabeticwoundhealingandcompleteskinregeneration
_version_ 1718398119142490112