Probing valley population imbalance in transition metal dichalcogenides via temperature-dependent second harmonic generation imaging

Abstract Degenerate minima in momentum space—valleys—provide an additional degree of freedom that can be used for information transport and storage. Notably, such minima naturally exist in the band structure of transition metal dichalcogenides (TMDs). When these atomically thin crystals interact wit...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Leonidas Mouchliadis, Sotiris Psilodimitrakopoulos, George Miltos Maragkakis, Ioanna Demeridou, George Kourmoulakis, Andreas Lemonis, George Kioseoglou, Emmanuel Stratakis
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/4c98b1d705af4efa89142e86d6ef4a0e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4c98b1d705af4efa89142e86d6ef4a0e
record_format dspace
spelling oai:doaj.org-article:4c98b1d705af4efa89142e86d6ef4a0e2021-12-02T13:35:39ZProbing valley population imbalance in transition metal dichalcogenides via temperature-dependent second harmonic generation imaging10.1038/s41699-020-00183-z2397-7132https://doaj.org/article/4c98b1d705af4efa89142e86d6ef4a0e2021-01-01T00:00:00Zhttps://doi.org/10.1038/s41699-020-00183-zhttps://doaj.org/toc/2397-7132Abstract Degenerate minima in momentum space—valleys—provide an additional degree of freedom that can be used for information transport and storage. Notably, such minima naturally exist in the band structure of transition metal dichalcogenides (TMDs). When these atomically thin crystals interact with intense laser light, the second harmonic generated (SHG) field inherits special characteristics that reflect not only the broken inversion symmetry in real space but also the valley anisotropy in reciprocal space. The latter is present whenever there exists a valley population imbalance (VPI) between the two valleys and affects the polarization state of the detected SHG. In this work, it is shown that the temperature-induced change of the SHG intensity dependence on the excitation field polarization is a fingerprint of VPI in TMDs. In particular, pixel-by-pixel VPI mapping based on polarization-resolved raster-scanning imaging microscopy was performed inside a cryostat to generate the SHG contrast in the presence of VPI from every point of a TMD flake. The generated contrast is marked by rotation of the SHG intensity polar diagrams at low temperatures and is attributed to the VPI-induced SHG.Leonidas MouchliadisSotiris PsilodimitrakopoulosGeorge Miltos MaragkakisIoanna DemeridouGeorge KourmoulakisAndreas LemonisGeorge KioseoglouEmmanuel StratakisNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492ChemistryQD1-999ENnpj 2D Materials and Applications, Vol 5, Iss 1, Pp 1-9 (2021)
institution DOAJ
collection DOAJ
language EN
topic Materials of engineering and construction. Mechanics of materials
TA401-492
Chemistry
QD1-999
spellingShingle Materials of engineering and construction. Mechanics of materials
TA401-492
Chemistry
QD1-999
Leonidas Mouchliadis
Sotiris Psilodimitrakopoulos
George Miltos Maragkakis
Ioanna Demeridou
George Kourmoulakis
Andreas Lemonis
George Kioseoglou
Emmanuel Stratakis
Probing valley population imbalance in transition metal dichalcogenides via temperature-dependent second harmonic generation imaging
description Abstract Degenerate minima in momentum space—valleys—provide an additional degree of freedom that can be used for information transport and storage. Notably, such minima naturally exist in the band structure of transition metal dichalcogenides (TMDs). When these atomically thin crystals interact with intense laser light, the second harmonic generated (SHG) field inherits special characteristics that reflect not only the broken inversion symmetry in real space but also the valley anisotropy in reciprocal space. The latter is present whenever there exists a valley population imbalance (VPI) between the two valleys and affects the polarization state of the detected SHG. In this work, it is shown that the temperature-induced change of the SHG intensity dependence on the excitation field polarization is a fingerprint of VPI in TMDs. In particular, pixel-by-pixel VPI mapping based on polarization-resolved raster-scanning imaging microscopy was performed inside a cryostat to generate the SHG contrast in the presence of VPI from every point of a TMD flake. The generated contrast is marked by rotation of the SHG intensity polar diagrams at low temperatures and is attributed to the VPI-induced SHG.
format article
author Leonidas Mouchliadis
Sotiris Psilodimitrakopoulos
George Miltos Maragkakis
Ioanna Demeridou
George Kourmoulakis
Andreas Lemonis
George Kioseoglou
Emmanuel Stratakis
author_facet Leonidas Mouchliadis
Sotiris Psilodimitrakopoulos
George Miltos Maragkakis
Ioanna Demeridou
George Kourmoulakis
Andreas Lemonis
George Kioseoglou
Emmanuel Stratakis
author_sort Leonidas Mouchliadis
title Probing valley population imbalance in transition metal dichalcogenides via temperature-dependent second harmonic generation imaging
title_short Probing valley population imbalance in transition metal dichalcogenides via temperature-dependent second harmonic generation imaging
title_full Probing valley population imbalance in transition metal dichalcogenides via temperature-dependent second harmonic generation imaging
title_fullStr Probing valley population imbalance in transition metal dichalcogenides via temperature-dependent second harmonic generation imaging
title_full_unstemmed Probing valley population imbalance in transition metal dichalcogenides via temperature-dependent second harmonic generation imaging
title_sort probing valley population imbalance in transition metal dichalcogenides via temperature-dependent second harmonic generation imaging
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/4c98b1d705af4efa89142e86d6ef4a0e
work_keys_str_mv AT leonidasmouchliadis probingvalleypopulationimbalanceintransitionmetaldichalcogenidesviatemperaturedependentsecondharmonicgenerationimaging
AT sotirispsilodimitrakopoulos probingvalleypopulationimbalanceintransitionmetaldichalcogenidesviatemperaturedependentsecondharmonicgenerationimaging
AT georgemiltosmaragkakis probingvalleypopulationimbalanceintransitionmetaldichalcogenidesviatemperaturedependentsecondharmonicgenerationimaging
AT ioannademeridou probingvalleypopulationimbalanceintransitionmetaldichalcogenidesviatemperaturedependentsecondharmonicgenerationimaging
AT georgekourmoulakis probingvalleypopulationimbalanceintransitionmetaldichalcogenidesviatemperaturedependentsecondharmonicgenerationimaging
AT andreaslemonis probingvalleypopulationimbalanceintransitionmetaldichalcogenidesviatemperaturedependentsecondharmonicgenerationimaging
AT georgekioseoglou probingvalleypopulationimbalanceintransitionmetaldichalcogenidesviatemperaturedependentsecondharmonicgenerationimaging
AT emmanuelstratakis probingvalleypopulationimbalanceintransitionmetaldichalcogenidesviatemperaturedependentsecondharmonicgenerationimaging
_version_ 1718392671637078016