Electric-field-controlled phase transition in a 2D molecular layer

Abstract Self-assembly of organic molecules is a mechanism crucial for design of molecular nanodevices. We demonstrate unprecedented control over the self-assembly, which could allow switching and patterning at scales accessible by lithography techniques. We use the scanning tunneling microscope (ST...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Peter Matvija, Filip Rozbořil, Pavel Sobotík, Ivan Ošťádal, Barbara Pieczyrak, Leszek Jurczyszyn, Pavel Kocán
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/4c9bb5c40b834008b13a03ab7fe96c84
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4c9bb5c40b834008b13a03ab7fe96c84
record_format dspace
spelling oai:doaj.org-article:4c9bb5c40b834008b13a03ab7fe96c842021-12-02T16:06:57ZElectric-field-controlled phase transition in a 2D molecular layer10.1038/s41598-017-07277-72045-2322https://doaj.org/article/4c9bb5c40b834008b13a03ab7fe96c842017-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-07277-7https://doaj.org/toc/2045-2322Abstract Self-assembly of organic molecules is a mechanism crucial for design of molecular nanodevices. We demonstrate unprecedented control over the self-assembly, which could allow switching and patterning at scales accessible by lithography techniques. We use the scanning tunneling microscope (STM) to induce a reversible 2D-gas-solid phase transition of copper phthalocyanine molecules on technologically important silicon surface functionalized by a metal monolayer. By means of ab-initio calculations we show that the charge transfer in the system results in a dipole moment carried by the molecules. The dipole moment interacts with a non-uniform electric field of the STM tip and the interaction changes the local density of molecules. To model the transition, we perform kinetic Monte Carlo simulations which reveal that the ordered molecular structures can form even without any attractive intermolecular interaction.Peter MatvijaFilip RozbořilPavel SobotíkIvan OšťádalBarbara PieczyrakLeszek JurczyszynPavel KocánNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-8 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Peter Matvija
Filip Rozbořil
Pavel Sobotík
Ivan Ošťádal
Barbara Pieczyrak
Leszek Jurczyszyn
Pavel Kocán
Electric-field-controlled phase transition in a 2D molecular layer
description Abstract Self-assembly of organic molecules is a mechanism crucial for design of molecular nanodevices. We demonstrate unprecedented control over the self-assembly, which could allow switching and patterning at scales accessible by lithography techniques. We use the scanning tunneling microscope (STM) to induce a reversible 2D-gas-solid phase transition of copper phthalocyanine molecules on technologically important silicon surface functionalized by a metal monolayer. By means of ab-initio calculations we show that the charge transfer in the system results in a dipole moment carried by the molecules. The dipole moment interacts with a non-uniform electric field of the STM tip and the interaction changes the local density of molecules. To model the transition, we perform kinetic Monte Carlo simulations which reveal that the ordered molecular structures can form even without any attractive intermolecular interaction.
format article
author Peter Matvija
Filip Rozbořil
Pavel Sobotík
Ivan Ošťádal
Barbara Pieczyrak
Leszek Jurczyszyn
Pavel Kocán
author_facet Peter Matvija
Filip Rozbořil
Pavel Sobotík
Ivan Ošťádal
Barbara Pieczyrak
Leszek Jurczyszyn
Pavel Kocán
author_sort Peter Matvija
title Electric-field-controlled phase transition in a 2D molecular layer
title_short Electric-field-controlled phase transition in a 2D molecular layer
title_full Electric-field-controlled phase transition in a 2D molecular layer
title_fullStr Electric-field-controlled phase transition in a 2D molecular layer
title_full_unstemmed Electric-field-controlled phase transition in a 2D molecular layer
title_sort electric-field-controlled phase transition in a 2d molecular layer
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/4c9bb5c40b834008b13a03ab7fe96c84
work_keys_str_mv AT petermatvija electricfieldcontrolledphasetransitionina2dmolecularlayer
AT filiprozboril electricfieldcontrolledphasetransitionina2dmolecularlayer
AT pavelsobotik electricfieldcontrolledphasetransitionina2dmolecularlayer
AT ivanostadal electricfieldcontrolledphasetransitionina2dmolecularlayer
AT barbarapieczyrak electricfieldcontrolledphasetransitionina2dmolecularlayer
AT leszekjurczyszyn electricfieldcontrolledphasetransitionina2dmolecularlayer
AT pavelkocan electricfieldcontrolledphasetransitionina2dmolecularlayer
_version_ 1718384773869600768