On unit group of finite semisimple group algebras of non-metabelian groups up to order 72

We characterize the unit group of semisimple group algebras $\mathbb{F}_qG$ of some non-metabelian groups, where $F_q$ is a field with $q=p^k$ elements for $p$ prime and a positive integer $k$. In particular, we consider all 6 non-metabelian groups of order 48, the only non-metabelian group $((C_3\t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Gaurav Mittal, Rajendra Kumar Sharma
Formato: article
Lenguaje:EN
Publicado: Institute of Mathematics of the Czech Academy of Science 2021
Materias:
Acceso en línea:https://doaj.org/article/4c9dc5adca9646f3a8bd21c129b14e3b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4c9dc5adca9646f3a8bd21c129b14e3b
record_format dspace
spelling oai:doaj.org-article:4c9dc5adca9646f3a8bd21c129b14e3b2021-11-08T09:59:12ZOn unit group of finite semisimple group algebras of non-metabelian groups up to order 720862-79592464-713610.21136/MB.2021.0116-19https://doaj.org/article/4c9dc5adca9646f3a8bd21c129b14e3b2021-12-01T00:00:00Zhttp://mb.math.cas.cz/full/146/4/mb146_4_5.pdfhttps://doaj.org/toc/0862-7959https://doaj.org/toc/2464-7136We characterize the unit group of semisimple group algebras $\mathbb{F}_qG$ of some non-metabelian groups, where $F_q$ is a field with $q=p^k$ elements for $p$ prime and a positive integer $k$. In particular, we consider all 6 non-metabelian groups of order 48, the only non-metabelian group $((C_3\times C_3)\rtimes C_3)\rtimes C_2$ of order 54, and 7 non-metabelian groups of order 72. This completes the study of unit groups of semisimple group algebras for groups upto order 72.Gaurav MittalRajendra Kumar SharmaInstitute of Mathematics of the Czech Academy of Sciencearticle unit group finite field wedderburn decompositionMathematicsQA1-939ENMathematica Bohemica, Vol 146, Iss 4, Pp 429-455 (2021)
institution DOAJ
collection DOAJ
language EN
topic unit group
finite field
wedderburn decomposition
Mathematics
QA1-939
spellingShingle unit group
finite field
wedderburn decomposition
Mathematics
QA1-939
Gaurav Mittal
Rajendra Kumar Sharma
On unit group of finite semisimple group algebras of non-metabelian groups up to order 72
description We characterize the unit group of semisimple group algebras $\mathbb{F}_qG$ of some non-metabelian groups, where $F_q$ is a field with $q=p^k$ elements for $p$ prime and a positive integer $k$. In particular, we consider all 6 non-metabelian groups of order 48, the only non-metabelian group $((C_3\times C_3)\rtimes C_3)\rtimes C_2$ of order 54, and 7 non-metabelian groups of order 72. This completes the study of unit groups of semisimple group algebras for groups upto order 72.
format article
author Gaurav Mittal
Rajendra Kumar Sharma
author_facet Gaurav Mittal
Rajendra Kumar Sharma
author_sort Gaurav Mittal
title On unit group of finite semisimple group algebras of non-metabelian groups up to order 72
title_short On unit group of finite semisimple group algebras of non-metabelian groups up to order 72
title_full On unit group of finite semisimple group algebras of non-metabelian groups up to order 72
title_fullStr On unit group of finite semisimple group algebras of non-metabelian groups up to order 72
title_full_unstemmed On unit group of finite semisimple group algebras of non-metabelian groups up to order 72
title_sort on unit group of finite semisimple group algebras of non-metabelian groups up to order 72
publisher Institute of Mathematics of the Czech Academy of Science
publishDate 2021
url https://doaj.org/article/4c9dc5adca9646f3a8bd21c129b14e3b
work_keys_str_mv AT gauravmittal onunitgroupoffinitesemisimplegroupalgebrasofnonmetabeliangroupsuptoorder72
AT rajendrakumarsharma onunitgroupoffinitesemisimplegroupalgebrasofnonmetabeliangroupsuptoorder72
_version_ 1718442710820454400