On unit group of finite semisimple group algebras of non-metabelian groups up to order 72
We characterize the unit group of semisimple group algebras $\mathbb{F}_qG$ of some non-metabelian groups, where $F_q$ is a field with $q=p^k$ elements for $p$ prime and a positive integer $k$. In particular, we consider all 6 non-metabelian groups of order 48, the only non-metabelian group $((C_3\t...
Guardado en:
Autores principales: | Gaurav Mittal, Rajendra Kumar Sharma |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Institute of Mathematics of the Czech Academy of Science
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4c9dc5adca9646f3a8bd21c129b14e3b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Unit groups of group algebras of abelian groups of order 32
por: Bhatt,Suchi, et al.
Publicado: (2021) -
Units in Abelian Group Algebras Over Direct Products of Indecomposable Rings
por: Danchev,Peter
Publicado: (2012) -
On asymptotic commutativity degree of finite groups
por: Nath,Rajat Kanti
Publicado: (2019) -
Finite groups with 4p2q elements of maximal order
por: Tan Sanbiao, et al.
Publicado: (2021) -
K-theory for the group C*-algebras of a residually finite discrete group with Kazhdan property T
por: Sudo,Takahiro
Publicado: (2014)