Discovering Condition-Specific Gene Co-Expression Patterns Using Gaussian Mixture Models: A Cancer Case Study
Abstract A gene co-expression network (GCN) describes associations between genes and points to genetic coordination of biochemical pathways. However, genetic correlations in a GCN are only detectable if they are present in the sampled conditions. With the increasing quantity of gene expression sampl...
Guardado en:
Autores principales: | Stephen P. Ficklin, Leland J. Dunwoodie, William L. Poehlman, Christopher Watson, Kimberly E. Roche, F. Alex Feltus |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4cac819eb2434b86901fb10baff65daf |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Sorting Five Human Tumor Types Reveals Specific Biomarkers and Background Classification Genes
por: Kimberly E. Roche, et al.
Publicado: (2018) -
Discovering key transcriptomic regulators in pancreatic ductal adenocarcinoma using Dirichlet process Gaussian mixture model
por: Sk Md Mosaddek Hossain, et al.
Publicado: (2021) -
Fast Approximations of the Jeffreys Divergence between Univariate Gaussian Mixtures via Mixture Conversions to Exponential-Polynomial Distributions
por: Frank Nielsen
Publicado: (2021) -
Identifying topologically associating domains and subdomains by Gaussian Mixture model And Proportion test
por: Wenbao Yu, et al.
Publicado: (2017) -
Tsallis generalized entropy for Gaussian mixture model parameter estimation on brain segmentation application
por: Mehran Azimbagirad, et al.
Publicado: (2021)