Ensemble Deep Learning for the Detection of COVID-19 in Unbalanced Chest X-ray Dataset
The ongoing COVID-19 pandemic has caused devastating effects on humanity worldwide. With practical advantages and wide accessibility, chest X-rays (CXRs) play vital roles in the diagnosis of COVID-19 and the evaluation of the extent of lung damages incurred by the virus. This study aimed to leverage...
Guardado en:
Autores principales: | Khin Yadanar Win, Noppadol Maneerat, Syna Sreng, Kazuhiko Hamamoto |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4cb34389d3d5420d848a1865b585639c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Predicting the Cochlear Dead Regions Using a Machine Learning-Based Approach with Oversampling Techniques
por: Young-Soo Chang, et al.
Publicado: (2021) -
Multiclass Skin Cancer Classification Using Ensemble of Fine-Tuned Deep Learning Models
por: Nabeela Kausar, et al.
Publicado: (2021) -
A Multi-Stage GAN for Multi-Organ Chest X-ray Image Generation and Segmentation
por: Giorgio Ciano, et al.
Publicado: (2021) -
Random Subspace Ensembles of Fully Convolutional Network for Time Series Classification
por: Yangqianhui Zhang, et al.
Publicado: (2021) -
Ensemble of Template-Free and Template-Based Classifiers for Protein Secondary Structure Prediction
por: Gabriel Bianchin de Oliveira, et al.
Publicado: (2021)