Social contacts and mixing patterns relevant to the spread of infectious diseases.
<h4>Background</h4>Mathematical modelling of infectious diseases transmitted by the respiratory or close-contact route (e.g., pandemic influenza) is increasingly being used to determine the impact of possible interventions. Although mixing patterns are known to be crucial determinants fo...
Guardado en:
Autores principales: | Joël Mossong, Niel Hens, Mark Jit, Philippe Beutels, Kari Auranen, Rafael Mikolajczyk, Marco Massari, Stefania Salmaso, Gianpaolo Scalia Tomba, Jacco Wallinga, Janneke Heijne, Malgorzata Sadkowska-Todys, Magdalena Rosinska, W John Edmunds |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2008
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4cbf52b54d07490fab92993f6ffa0f0a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Active learning to understand infectious disease models and improve policy making.
por: Lander Willem, et al.
Publicado: (2014) -
Effect of vaccines and antivirals during the major 2009 A(H1N1) pandemic wave in Norway--and the influence of vaccination timing.
por: Birgitte Freiesleben de Blasio, et al.
Publicado: (2012) -
Social contact patterns relevant to the spread of respiratory infectious diseases in Hong Kong
por: Kathy Leung, et al.
Publicado: (2017) -
CoMix: comparing mixing patterns in the Belgian population during and after lockdown
por: Pietro Coletti, et al.
Publicado: (2020) -
Spatio-temporal predictive modeling framework for infectious disease spread
por: Sashikumaar Ganesan, et al.
Publicado: (2021)