Ion mobility collision cross-section atlas for known and unknown metabolite annotation in untargeted metabolomics
Collision cross section (CCS) information can aid the annotation of unknown metabolites. Here, the authors optimize the machine-learning based prediction of metabolite CCS values and curate a 1.6 million compound CCS atlas, improving annotation accuracy and coverage for known and unknown metabolites...
Guardado en:
Autores principales: | Zhiwei Zhou, Mingdu Luo, Xi Chen, Yandong Yin, Xin Xiong, Ruohong Wang, Zheng-Jiang Zhu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4cc6a094179b4b359ed49dbbe0bc6a19 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Metabolic reaction network-based recursive metabolite annotation for untargeted metabolomics
por: Xiaotao Shen, et al.
Publicado: (2019) -
COVID-19: Knowns, Unknowns, and Questions
por: Stuart Weston, et al.
Publicado: (2020) -
Untargeted Metabolomics Reveals Species-Specific Metabolite Production and Shared Nutrient Consumption by Pseudomonas aeruginosa and Staphylococcus aureus
por: Laura J. Dunphy, et al.
Publicado: (2021) -
Untargeted metabolomics approach to discriminate mistletoe commercial products
por: Cécile Vanhaverbeke, et al.
Publicado: (2021) -
Photosystem I Inhibition, Protection and Signalling: Knowns and Unknowns
por: Yugo Lima-Melo, et al.
Publicado: (2021)