Topological Formulae for the Zeroth Cohomology of Line Bundles on del Pezzo and Hirzebruch Surfaces

We show that the zeroth cohomology of effective line bundles on del Pezzo and Hirzebruch surfaces can always be computed in terms of a topological index.

Guardado en:
Detalles Bibliográficos
Autores principales: Brodie Callum R., Constantin Andrei, Deen Rehan, Lukas Andre
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/4ccd28029fe24ba08e338c5c5c4393c3
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4ccd28029fe24ba08e338c5c5c4393c3
record_format dspace
spelling oai:doaj.org-article:4ccd28029fe24ba08e338c5c5c4393c32021-12-05T14:10:45ZTopological Formulae for the Zeroth Cohomology of Line Bundles on del Pezzo and Hirzebruch Surfaces2300-744310.1515/coma-2020-0115https://doaj.org/article/4ccd28029fe24ba08e338c5c5c4393c32021-01-01T00:00:00Zhttps://doi.org/10.1515/coma-2020-0115https://doaj.org/toc/2300-7443We show that the zeroth cohomology of effective line bundles on del Pezzo and Hirzebruch surfaces can always be computed in terms of a topological index.Brodie Callum R.Constantin AndreiDeen RehanLukas AndreDe Gruyterarticleline bundle cohomologydel pezzo surfaceshirzebruch surfaces32l1055n3019l10MathematicsQA1-939ENComplex Manifolds, Vol 8, Iss 1, Pp 223-229 (2021)
institution DOAJ
collection DOAJ
language EN
topic line bundle cohomology
del pezzo surfaces
hirzebruch surfaces
32l10
55n30
19l10
Mathematics
QA1-939
spellingShingle line bundle cohomology
del pezzo surfaces
hirzebruch surfaces
32l10
55n30
19l10
Mathematics
QA1-939
Brodie Callum R.
Constantin Andrei
Deen Rehan
Lukas Andre
Topological Formulae for the Zeroth Cohomology of Line Bundles on del Pezzo and Hirzebruch Surfaces
description We show that the zeroth cohomology of effective line bundles on del Pezzo and Hirzebruch surfaces can always be computed in terms of a topological index.
format article
author Brodie Callum R.
Constantin Andrei
Deen Rehan
Lukas Andre
author_facet Brodie Callum R.
Constantin Andrei
Deen Rehan
Lukas Andre
author_sort Brodie Callum R.
title Topological Formulae for the Zeroth Cohomology of Line Bundles on del Pezzo and Hirzebruch Surfaces
title_short Topological Formulae for the Zeroth Cohomology of Line Bundles on del Pezzo and Hirzebruch Surfaces
title_full Topological Formulae for the Zeroth Cohomology of Line Bundles on del Pezzo and Hirzebruch Surfaces
title_fullStr Topological Formulae for the Zeroth Cohomology of Line Bundles on del Pezzo and Hirzebruch Surfaces
title_full_unstemmed Topological Formulae for the Zeroth Cohomology of Line Bundles on del Pezzo and Hirzebruch Surfaces
title_sort topological formulae for the zeroth cohomology of line bundles on del pezzo and hirzebruch surfaces
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/4ccd28029fe24ba08e338c5c5c4393c3
work_keys_str_mv AT brodiecallumr topologicalformulaeforthezerothcohomologyoflinebundlesondelpezzoandhirzebruchsurfaces
AT constantinandrei topologicalformulaeforthezerothcohomologyoflinebundlesondelpezzoandhirzebruchsurfaces
AT deenrehan topologicalformulaeforthezerothcohomologyoflinebundlesondelpezzoandhirzebruchsurfaces
AT lukasandre topologicalformulaeforthezerothcohomologyoflinebundlesondelpezzoandhirzebruchsurfaces
_version_ 1718371761291001856