Topological Formulae for the Zeroth Cohomology of Line Bundles on del Pezzo and Hirzebruch Surfaces
We show that the zeroth cohomology of effective line bundles on del Pezzo and Hirzebruch surfaces can always be computed in terms of a topological index.
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4ccd28029fe24ba08e338c5c5c4393c3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:4ccd28029fe24ba08e338c5c5c4393c3 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:4ccd28029fe24ba08e338c5c5c4393c32021-12-05T14:10:45ZTopological Formulae for the Zeroth Cohomology of Line Bundles on del Pezzo and Hirzebruch Surfaces2300-744310.1515/coma-2020-0115https://doaj.org/article/4ccd28029fe24ba08e338c5c5c4393c32021-01-01T00:00:00Zhttps://doi.org/10.1515/coma-2020-0115https://doaj.org/toc/2300-7443We show that the zeroth cohomology of effective line bundles on del Pezzo and Hirzebruch surfaces can always be computed in terms of a topological index.Brodie Callum R.Constantin AndreiDeen RehanLukas AndreDe Gruyterarticleline bundle cohomologydel pezzo surfaceshirzebruch surfaces32l1055n3019l10MathematicsQA1-939ENComplex Manifolds, Vol 8, Iss 1, Pp 223-229 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
line bundle cohomology del pezzo surfaces hirzebruch surfaces 32l10 55n30 19l10 Mathematics QA1-939 |
spellingShingle |
line bundle cohomology del pezzo surfaces hirzebruch surfaces 32l10 55n30 19l10 Mathematics QA1-939 Brodie Callum R. Constantin Andrei Deen Rehan Lukas Andre Topological Formulae for the Zeroth Cohomology of Line Bundles on del Pezzo and Hirzebruch Surfaces |
description |
We show that the zeroth cohomology of effective line bundles on del Pezzo and Hirzebruch surfaces can always be computed in terms of a topological index. |
format |
article |
author |
Brodie Callum R. Constantin Andrei Deen Rehan Lukas Andre |
author_facet |
Brodie Callum R. Constantin Andrei Deen Rehan Lukas Andre |
author_sort |
Brodie Callum R. |
title |
Topological Formulae for the Zeroth Cohomology of Line Bundles on del Pezzo and Hirzebruch Surfaces |
title_short |
Topological Formulae for the Zeroth Cohomology of Line Bundles on del Pezzo and Hirzebruch Surfaces |
title_full |
Topological Formulae for the Zeroth Cohomology of Line Bundles on del Pezzo and Hirzebruch Surfaces |
title_fullStr |
Topological Formulae for the Zeroth Cohomology of Line Bundles on del Pezzo and Hirzebruch Surfaces |
title_full_unstemmed |
Topological Formulae for the Zeroth Cohomology of Line Bundles on del Pezzo and Hirzebruch Surfaces |
title_sort |
topological formulae for the zeroth cohomology of line bundles on del pezzo and hirzebruch surfaces |
publisher |
De Gruyter |
publishDate |
2021 |
url |
https://doaj.org/article/4ccd28029fe24ba08e338c5c5c4393c3 |
work_keys_str_mv |
AT brodiecallumr topologicalformulaeforthezerothcohomologyoflinebundlesondelpezzoandhirzebruchsurfaces AT constantinandrei topologicalformulaeforthezerothcohomologyoflinebundlesondelpezzoandhirzebruchsurfaces AT deenrehan topologicalformulaeforthezerothcohomologyoflinebundlesondelpezzoandhirzebruchsurfaces AT lukasandre topologicalformulaeforthezerothcohomologyoflinebundlesondelpezzoandhirzebruchsurfaces |
_version_ |
1718371761291001856 |