Preventing nuclear fuel material adhesion on glove box components using nanoparticle coating

Minimizing the retention of nuclear fuel materials in glove box components and curtailing the external exposure dose are desirable. Therefore, plutonium and uranium mixed oxide (MOX) powder adhesion-prevention technology involving nanoparticle coating of the acrylic panels of the glove box is develo...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tomoomi SEGAWA, Koichi KAWAGUCHI, Katsunori ISHII, Masahiro SUZUKI, Joji TACHIHARA, Kiyoto TAKATO, Takatoshi OKITA, Hiroshi SATONE, Michitaka SUZUKI
Formato: article
Lenguaje:EN
Publicado: The Japan Society of Mechanical Engineers 2021
Materias:
afm
Acceso en línea:https://doaj.org/article/4cdfc4b3d8284837bc3051a2e8d8bf36
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4cdfc4b3d8284837bc3051a2e8d8bf36
record_format dspace
spelling oai:doaj.org-article:4cdfc4b3d8284837bc3051a2e8d8bf362021-11-29T06:07:02ZPreventing nuclear fuel material adhesion on glove box components using nanoparticle coating2187-974510.1299/mej.21-00022https://doaj.org/article/4cdfc4b3d8284837bc3051a2e8d8bf362021-05-01T00:00:00Zhttps://www.jstage.jst.go.jp/article/mej/8/3/8_21-00022/_pdf/-char/enhttps://doaj.org/toc/2187-9745Minimizing the retention of nuclear fuel materials in glove box components and curtailing the external exposure dose are desirable. Therefore, plutonium and uranium mixed oxide (MOX) powder adhesion-prevention technology involving nanoparticle coating of the acrylic panels of the glove box is developed. Surface analysis using atomic force microscopy showed that root mean square roughness value of the nanoparticle-coated acrylic test piece surface (75.8 nm) was higher than that of the noncoated surface (2.14 nm). The nanoparticle coating reduced the van der Waals force between alumina particles and the test piece surface through the formation of nanosized rugged surfaces. The coating reduced the minimum adhesion force (normalized by the particle diameter) between the uranium dioxide particle and the acrylic test piece surface. For the smallest particle (diameter: ~5 μm) associated with desorption, this minimum adhesion force decreased to ~5%. The nanoparticle coating also lowered the average adhesion mass per unit area of the MOX powder on the acrylic test piece to ~10%. The expectation is that this method will reduce the retention of nuclear fuel materials in the box, lower the external exposure dose, and improve the visibility of the acrylic panels.Tomoomi SEGAWAKoichi KAWAGUCHIKatsunori ISHIIMasahiro SUZUKIJoji TACHIHARAKiyoto TAKATOTakatoshi OKITAHiroshi SATONEMichitaka SUZUKIThe Japan Society of Mechanical Engineersarticlenanoparticle coatingacrylic panelalumina (al2o3)uranium dioxide (uo2)plutonium and uranium mixed oxide (mox)afmcentrifugal methodadhesionMechanical engineering and machineryTJ1-1570ENMechanical Engineering Journal, Vol 8, Iss 3, Pp 21-00022-21-00022 (2021)
institution DOAJ
collection DOAJ
language EN
topic nanoparticle coating
acrylic panel
alumina (al2o3)
uranium dioxide (uo2)
plutonium and uranium mixed oxide (mox)
afm
centrifugal method
adhesion
Mechanical engineering and machinery
TJ1-1570
spellingShingle nanoparticle coating
acrylic panel
alumina (al2o3)
uranium dioxide (uo2)
plutonium and uranium mixed oxide (mox)
afm
centrifugal method
adhesion
Mechanical engineering and machinery
TJ1-1570
Tomoomi SEGAWA
Koichi KAWAGUCHI
Katsunori ISHII
Masahiro SUZUKI
Joji TACHIHARA
Kiyoto TAKATO
Takatoshi OKITA
Hiroshi SATONE
Michitaka SUZUKI
Preventing nuclear fuel material adhesion on glove box components using nanoparticle coating
description Minimizing the retention of nuclear fuel materials in glove box components and curtailing the external exposure dose are desirable. Therefore, plutonium and uranium mixed oxide (MOX) powder adhesion-prevention technology involving nanoparticle coating of the acrylic panels of the glove box is developed. Surface analysis using atomic force microscopy showed that root mean square roughness value of the nanoparticle-coated acrylic test piece surface (75.8 nm) was higher than that of the noncoated surface (2.14 nm). The nanoparticle coating reduced the van der Waals force between alumina particles and the test piece surface through the formation of nanosized rugged surfaces. The coating reduced the minimum adhesion force (normalized by the particle diameter) between the uranium dioxide particle and the acrylic test piece surface. For the smallest particle (diameter: ~5 μm) associated with desorption, this minimum adhesion force decreased to ~5%. The nanoparticle coating also lowered the average adhesion mass per unit area of the MOX powder on the acrylic test piece to ~10%. The expectation is that this method will reduce the retention of nuclear fuel materials in the box, lower the external exposure dose, and improve the visibility of the acrylic panels.
format article
author Tomoomi SEGAWA
Koichi KAWAGUCHI
Katsunori ISHII
Masahiro SUZUKI
Joji TACHIHARA
Kiyoto TAKATO
Takatoshi OKITA
Hiroshi SATONE
Michitaka SUZUKI
author_facet Tomoomi SEGAWA
Koichi KAWAGUCHI
Katsunori ISHII
Masahiro SUZUKI
Joji TACHIHARA
Kiyoto TAKATO
Takatoshi OKITA
Hiroshi SATONE
Michitaka SUZUKI
author_sort Tomoomi SEGAWA
title Preventing nuclear fuel material adhesion on glove box components using nanoparticle coating
title_short Preventing nuclear fuel material adhesion on glove box components using nanoparticle coating
title_full Preventing nuclear fuel material adhesion on glove box components using nanoparticle coating
title_fullStr Preventing nuclear fuel material adhesion on glove box components using nanoparticle coating
title_full_unstemmed Preventing nuclear fuel material adhesion on glove box components using nanoparticle coating
title_sort preventing nuclear fuel material adhesion on glove box components using nanoparticle coating
publisher The Japan Society of Mechanical Engineers
publishDate 2021
url https://doaj.org/article/4cdfc4b3d8284837bc3051a2e8d8bf36
work_keys_str_mv AT tomoomisegawa preventingnuclearfuelmaterialadhesionongloveboxcomponentsusingnanoparticlecoating
AT koichikawaguchi preventingnuclearfuelmaterialadhesionongloveboxcomponentsusingnanoparticlecoating
AT katsunoriishii preventingnuclearfuelmaterialadhesionongloveboxcomponentsusingnanoparticlecoating
AT masahirosuzuki preventingnuclearfuelmaterialadhesionongloveboxcomponentsusingnanoparticlecoating
AT jojitachihara preventingnuclearfuelmaterialadhesionongloveboxcomponentsusingnanoparticlecoating
AT kiyototakato preventingnuclearfuelmaterialadhesionongloveboxcomponentsusingnanoparticlecoating
AT takatoshiokita preventingnuclearfuelmaterialadhesionongloveboxcomponentsusingnanoparticlecoating
AT hiroshisatone preventingnuclearfuelmaterialadhesionongloveboxcomponentsusingnanoparticlecoating
AT michitakasuzuki preventingnuclearfuelmaterialadhesionongloveboxcomponentsusingnanoparticlecoating
_version_ 1718407583502434304