Physically informed artificial neural networks for atomistic modeling of materials
Traditional machine learning potentials suffer from poor transferability to unknown structures. Here the authors present an approach to improve the transferability of machine-learning potentials by including information on the physical nature of interatomic bonding.
Guardado en:
Autores principales: | G. P. Purja Pun, R. Batra, R. Ramprasad, Y. Mishin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4ce116e79e4e45a4ac852f09407b14a1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Atomistic Line Graph Neural Network for improved materials property predictions
por: Kamal Choudhary, et al.
Publicado: (2021) -
Modeling of the height control system using artificial neural networks
por: A. R Tahavvor, et al.
Publicado: (2016) -
Practical Aspects of the Design and Use of the Artificial Neural Networks in Materials Engineering
por: Wojciech Sitek, et al.
Publicado: (2021) -
An Investigation of Nanomechanical Properties of Materials using Nanoindentation and Artificial Neural Network
por: Hyuk Lee, et al.
Publicado: (2019) -
Modeling and Forecasting Cases of RSV Using Artificial Neural Networks
por: Myladis R. Cogollo, et al.
Publicado: (2021)