Physically informed artificial neural networks for atomistic modeling of materials
Traditional machine learning potentials suffer from poor transferability to unknown structures. Here the authors present an approach to improve the transferability of machine-learning potentials by including information on the physical nature of interatomic bonding.
Enregistré dans:
Auteurs principaux: | G. P. Purja Pun, R. Batra, R. Ramprasad, Y. Mishin |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/4ce116e79e4e45a4ac852f09407b14a1 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Atomistic Line Graph Neural Network for improved materials property predictions
par: Kamal Choudhary, et autres
Publié: (2021) -
Modeling of the height control system using artificial neural networks
par: A. R Tahavvor, et autres
Publié: (2016) -
Practical Aspects of the Design and Use of the Artificial Neural Networks in Materials Engineering
par: Wojciech Sitek, et autres
Publié: (2021) -
An Investigation of Nanomechanical Properties of Materials using Nanoindentation and Artificial Neural Network
par: Hyuk Lee, et autres
Publié: (2019) -
Modeling and Forecasting Cases of RSV Using Artificial Neural Networks
par: Myladis R. Cogollo, et autres
Publié: (2021)