Boosting Atomic Orbit Search Using Dynamic-Based Learning for Feature Selection
Feature selection (FS) is a well-known preprocess step in soft computing and machine learning algorithms. It plays a critical role in different real-world applications since it aims to determine the relevant features and remove other ones. This process (i.e., FS) reduces the time and space complexit...
Guardado en:
Autores principales: | Mohamed Abd Elaziz, Laith Abualigah, Dalia Yousri, Diego Oliva, Mohammed A. A. Al-Qaness, Mohammad H. Nadimi-Shahraki, Ahmed A. Ewees, Songfeng Lu, Rehab Ali Ibrahim |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4ce1691c716d49c5b5c383a07d1c4110 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Boosting COVID-19 Image Classification Using MobileNetV3 and Aquila Optimizer Algorithm
por: Mohamed Abd Elaziz, et al.
Publicado: (2021) -
A Sequential Handwriting Recognition Model Based on a Dynamically Configurable CRNN
por: Ahmed AL-Saffar, et al.
Publicado: (2021) -
Harmony Search Algorithm and Fuzzy Logic Theory: An Extensive Review from Theory to Applications
por: Mohammad Nasir, et al.
Publicado: (2021) -
A new self-adaptive quasi-oppositional stochastic fractal search for the inverse problem of structural damage assessment
por: Nizar Faisal Alkayem, et al.
Publicado: (2022) -
Comparison Between the Effect of Femtosecond Laser in situ Keratomileusis (FS-LASIK) and Femtosecond Small Incision Lenticule Extraction (FS-SMILE) on the Corneal Endothelium
por: Shaaban YM, et al.
Publicado: (2020)