CA‐PMG: Channel attention and progressive multi‐granularity training network for fine‐grained visual classification
Abstract Fine‐grained visual classification is challenging due to the inherently subtle intra‐class object variations. To solve this issue, a novel framework named channel attention and progressive multi‐granularity training network, is proposed. It first exploits meaningful feature maps through the...
Guardado en:
Autores principales: | Peipei Zhao, Qiguang Miao, Hang Yao, Xiangzeng Liu, Ruyi Liu, Maoguo Gong |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4cef360c02644bdb9315476c85c48414 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Part‐level attention networks for cross‐domain person re‐identification
por: Qun Zhao, et al.
Publicado: (2021) -
Multi‐dimensional weighted cross‐attention network in crowded scenes
por: Yefan Xie, et al.
Publicado: (2021) -
Multiple object tracking based on multi‐task learning with strip attention
por: Yaoye Song, et al.
Publicado: (2021) -
Learn from Object Counting: Crowd Counting with Meta‐learning
por: Changtong Zan, et al.
Publicado: (2021) -
Crowd understanding and analysis
por: Qi Wang, et al.
Publicado: (2021)