Inter-laboratory comparison of gene expression biodosimetry for protracted radiation exposures as part of the RENEB and EURADOS WG10 2019 exercise
Abstract Large-scale radiation emergency scenarios involving protracted low dose rate radiation exposure (e.g. a hidden radioactive source in a train) necessitate the development of high throughput methods for providing rapid individual dose estimates. During the RENEB (Running the European Network...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4d01b0e6a4464259a5c4985a6c86b723 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:4d01b0e6a4464259a5c4985a6c86b723 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:4d01b0e6a4464259a5c4985a6c86b7232021-12-02T15:37:58ZInter-laboratory comparison of gene expression biodosimetry for protracted radiation exposures as part of the RENEB and EURADOS WG10 2019 exercise10.1038/s41598-021-88403-42045-2322https://doaj.org/article/4d01b0e6a4464259a5c4985a6c86b7232021-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-88403-4https://doaj.org/toc/2045-2322Abstract Large-scale radiation emergency scenarios involving protracted low dose rate radiation exposure (e.g. a hidden radioactive source in a train) necessitate the development of high throughput methods for providing rapid individual dose estimates. During the RENEB (Running the European Network of Biodosimetry) 2019 exercise, four EDTA-blood samples were exposed to an Iridium-192 source (1.36 TBq, Tech-Ops 880 Sentinal) at varying distances and geometries. This resulted in protracted doses ranging between 0.2 and 2.4 Gy using dose rates of 1.5–40 mGy/min and exposure times of 1 or 2.5 h. Blood samples were exposed in thermo bottles that maintained temperatures between 39 and 27.7 °C. After exposure, EDTA-blood samples were transferred into PAXGene tubes to preserve RNA. RNA was isolated in one laboratory and aliquots of four blinded RNA were sent to another five teams for dose estimation based on gene expression changes. Using an X-ray machine, samples for two calibration curves (first: constant dose rate of 8.3 mGy/min and 0.5–8 h varying exposure times; second: varying dose rates of 0.5–8.3 mGy/min and 4 h exposure time) were generated for distribution. Assays were run in each laboratory according to locally established protocols using either a microarray platform (one team) or quantitative real-time PCR (qRT-PCR, five teams). The qRT-PCR measurements were highly reproducible with coefficient of variation below 15% in ≥ 75% of measurements resulting in reported dose estimates ranging between 0 and 0.5 Gy in all samples and in all laboratories. Up to twofold reductions in RNA copy numbers per degree Celsius relative to 37 °C were observed. However, when irradiating independent samples equivalent to the blinded samples but increasing the combined exposure and incubation time to 4 h at 37 °C, expected gene expression changes corresponding to the absorbed doses were observed. Clearly, time and an optimal temperature of 37 °C must be allowed for the biological response to manifest as gene expression changes prior to running the gene expression assay. In conclusion, dose reconstructions based on gene expression measurements are highly reproducible across different techniques, protocols and laboratories. Even a radiation dose of 0.25 Gy protracted over 4 h (1 mGy/min) can be identified. These results demonstrate the importance of the incubation conditions and time span between radiation exposure and measurements of gene expression changes when using this method in a field exercise or real emergency situation.M. AbendS. A. AmundsonC. BadieK. BrzoskaR. HargitaiR. KriehuberS. SchüleE. KisS. A. GhandhiK. LumniczkyS. R. MortonG. O’BrienD. OskampP. OstheimC. SiebenwirthI. ShuryakT. SzatmáriM. Unverricht-YeboahE. AinsburyC. BassinetU. KulkaU. OestreicherY. RisticF. TrompierA. WojcikL. WaldnerM. PortNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-15 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q M. Abend S. A. Amundson C. Badie K. Brzoska R. Hargitai R. Kriehuber S. Schüle E. Kis S. A. Ghandhi K. Lumniczky S. R. Morton G. O’Brien D. Oskamp P. Ostheim C. Siebenwirth I. Shuryak T. Szatmári M. Unverricht-Yeboah E. Ainsbury C. Bassinet U. Kulka U. Oestreicher Y. Ristic F. Trompier A. Wojcik L. Waldner M. Port Inter-laboratory comparison of gene expression biodosimetry for protracted radiation exposures as part of the RENEB and EURADOS WG10 2019 exercise |
description |
Abstract Large-scale radiation emergency scenarios involving protracted low dose rate radiation exposure (e.g. a hidden radioactive source in a train) necessitate the development of high throughput methods for providing rapid individual dose estimates. During the RENEB (Running the European Network of Biodosimetry) 2019 exercise, four EDTA-blood samples were exposed to an Iridium-192 source (1.36 TBq, Tech-Ops 880 Sentinal) at varying distances and geometries. This resulted in protracted doses ranging between 0.2 and 2.4 Gy using dose rates of 1.5–40 mGy/min and exposure times of 1 or 2.5 h. Blood samples were exposed in thermo bottles that maintained temperatures between 39 and 27.7 °C. After exposure, EDTA-blood samples were transferred into PAXGene tubes to preserve RNA. RNA was isolated in one laboratory and aliquots of four blinded RNA were sent to another five teams for dose estimation based on gene expression changes. Using an X-ray machine, samples for two calibration curves (first: constant dose rate of 8.3 mGy/min and 0.5–8 h varying exposure times; second: varying dose rates of 0.5–8.3 mGy/min and 4 h exposure time) were generated for distribution. Assays were run in each laboratory according to locally established protocols using either a microarray platform (one team) or quantitative real-time PCR (qRT-PCR, five teams). The qRT-PCR measurements were highly reproducible with coefficient of variation below 15% in ≥ 75% of measurements resulting in reported dose estimates ranging between 0 and 0.5 Gy in all samples and in all laboratories. Up to twofold reductions in RNA copy numbers per degree Celsius relative to 37 °C were observed. However, when irradiating independent samples equivalent to the blinded samples but increasing the combined exposure and incubation time to 4 h at 37 °C, expected gene expression changes corresponding to the absorbed doses were observed. Clearly, time and an optimal temperature of 37 °C must be allowed for the biological response to manifest as gene expression changes prior to running the gene expression assay. In conclusion, dose reconstructions based on gene expression measurements are highly reproducible across different techniques, protocols and laboratories. Even a radiation dose of 0.25 Gy protracted over 4 h (1 mGy/min) can be identified. These results demonstrate the importance of the incubation conditions and time span between radiation exposure and measurements of gene expression changes when using this method in a field exercise or real emergency situation. |
format |
article |
author |
M. Abend S. A. Amundson C. Badie K. Brzoska R. Hargitai R. Kriehuber S. Schüle E. Kis S. A. Ghandhi K. Lumniczky S. R. Morton G. O’Brien D. Oskamp P. Ostheim C. Siebenwirth I. Shuryak T. Szatmári M. Unverricht-Yeboah E. Ainsbury C. Bassinet U. Kulka U. Oestreicher Y. Ristic F. Trompier A. Wojcik L. Waldner M. Port |
author_facet |
M. Abend S. A. Amundson C. Badie K. Brzoska R. Hargitai R. Kriehuber S. Schüle E. Kis S. A. Ghandhi K. Lumniczky S. R. Morton G. O’Brien D. Oskamp P. Ostheim C. Siebenwirth I. Shuryak T. Szatmári M. Unverricht-Yeboah E. Ainsbury C. Bassinet U. Kulka U. Oestreicher Y. Ristic F. Trompier A. Wojcik L. Waldner M. Port |
author_sort |
M. Abend |
title |
Inter-laboratory comparison of gene expression biodosimetry for protracted radiation exposures as part of the RENEB and EURADOS WG10 2019 exercise |
title_short |
Inter-laboratory comparison of gene expression biodosimetry for protracted radiation exposures as part of the RENEB and EURADOS WG10 2019 exercise |
title_full |
Inter-laboratory comparison of gene expression biodosimetry for protracted radiation exposures as part of the RENEB and EURADOS WG10 2019 exercise |
title_fullStr |
Inter-laboratory comparison of gene expression biodosimetry for protracted radiation exposures as part of the RENEB and EURADOS WG10 2019 exercise |
title_full_unstemmed |
Inter-laboratory comparison of gene expression biodosimetry for protracted radiation exposures as part of the RENEB and EURADOS WG10 2019 exercise |
title_sort |
inter-laboratory comparison of gene expression biodosimetry for protracted radiation exposures as part of the reneb and eurados wg10 2019 exercise |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/4d01b0e6a4464259a5c4985a6c86b723 |
work_keys_str_mv |
AT mabend interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise AT saamundson interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise AT cbadie interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise AT kbrzoska interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise AT rhargitai interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise AT rkriehuber interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise AT sschule interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise AT ekis interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise AT saghandhi interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise AT klumniczky interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise AT srmorton interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise AT gobrien interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise AT doskamp interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise AT postheim interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise AT csiebenwirth interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise AT ishuryak interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise AT tszatmari interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise AT munverrichtyeboah interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise AT eainsbury interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise AT cbassinet interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise AT ukulka interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise AT uoestreicher interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise AT yristic interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise AT ftrompier interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise AT awojcik interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise AT lwaldner interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise AT mport interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise |
_version_ |
1718386170880065536 |