Inter-laboratory comparison of gene expression biodosimetry for protracted radiation exposures as part of the RENEB and EURADOS WG10 2019 exercise

Abstract Large-scale radiation emergency scenarios involving protracted low dose rate radiation exposure (e.g. a hidden radioactive source in a train) necessitate the development of high throughput methods for providing rapid individual dose estimates. During the RENEB (Running the European Network...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: M. Abend, S. A. Amundson, C. Badie, K. Brzoska, R. Hargitai, R. Kriehuber, S. Schüle, E. Kis, S. A. Ghandhi, K. Lumniczky, S. R. Morton, G. O’Brien, D. Oskamp, P. Ostheim, C. Siebenwirth, I. Shuryak, T. Szatmári, M. Unverricht-Yeboah, E. Ainsbury, C. Bassinet, U. Kulka, U. Oestreicher, Y. Ristic, F. Trompier, A. Wojcik, L. Waldner, M. Port
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/4d01b0e6a4464259a5c4985a6c86b723
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4d01b0e6a4464259a5c4985a6c86b723
record_format dspace
spelling oai:doaj.org-article:4d01b0e6a4464259a5c4985a6c86b7232021-12-02T15:37:58ZInter-laboratory comparison of gene expression biodosimetry for protracted radiation exposures as part of the RENEB and EURADOS WG10 2019 exercise10.1038/s41598-021-88403-42045-2322https://doaj.org/article/4d01b0e6a4464259a5c4985a6c86b7232021-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-88403-4https://doaj.org/toc/2045-2322Abstract Large-scale radiation emergency scenarios involving protracted low dose rate radiation exposure (e.g. a hidden radioactive source in a train) necessitate the development of high throughput methods for providing rapid individual dose estimates. During the RENEB (Running the European Network of Biodosimetry) 2019 exercise, four EDTA-blood samples were exposed to an Iridium-192 source (1.36 TBq, Tech-Ops 880 Sentinal) at varying distances and geometries. This resulted in protracted doses ranging between 0.2 and 2.4 Gy using dose rates of 1.5–40 mGy/min and exposure times of 1 or 2.5 h. Blood samples were exposed in thermo bottles that maintained temperatures between 39 and 27.7 °C. After exposure, EDTA-blood samples were transferred into PAXGene tubes to preserve RNA. RNA was isolated in one laboratory and aliquots of four blinded RNA were sent to another five teams for dose estimation based on gene expression changes. Using an X-ray machine, samples for two calibration curves (first: constant dose rate of 8.3 mGy/min and 0.5–8 h varying exposure times; second: varying dose rates of 0.5–8.3 mGy/min and 4 h exposure time) were generated for distribution. Assays were run in each laboratory according to locally established protocols using either a microarray platform (one team) or quantitative real-time PCR (qRT-PCR, five teams). The qRT-PCR measurements were highly reproducible with coefficient of variation below 15% in ≥ 75% of measurements resulting in reported dose estimates ranging between 0 and 0.5 Gy in all samples and in all laboratories. Up to twofold reductions in RNA copy numbers per degree Celsius relative to 37 °C were observed. However, when irradiating independent samples equivalent to the blinded samples but increasing the combined exposure and incubation time to 4 h at 37 °C, expected gene expression changes corresponding to the absorbed doses were observed. Clearly, time and an optimal temperature of 37 °C must be allowed for the biological response to manifest as gene expression changes prior to running the gene expression assay. In conclusion, dose reconstructions based on gene expression measurements are highly reproducible across different techniques, protocols and laboratories. Even a radiation dose of 0.25 Gy protracted over 4 h (1 mGy/min) can be identified. These results demonstrate the importance of the incubation conditions and time span between radiation exposure and measurements of gene expression changes when using this method in a field exercise or real emergency situation.M. AbendS. A. AmundsonC. BadieK. BrzoskaR. HargitaiR. KriehuberS. SchüleE. KisS. A. GhandhiK. LumniczkyS. R. MortonG. O’BrienD. OskampP. OstheimC. SiebenwirthI. ShuryakT. SzatmáriM. Unverricht-YeboahE. AinsburyC. BassinetU. KulkaU. OestreicherY. RisticF. TrompierA. WojcikL. WaldnerM. PortNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-15 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
M. Abend
S. A. Amundson
C. Badie
K. Brzoska
R. Hargitai
R. Kriehuber
S. Schüle
E. Kis
S. A. Ghandhi
K. Lumniczky
S. R. Morton
G. O’Brien
D. Oskamp
P. Ostheim
C. Siebenwirth
I. Shuryak
T. Szatmári
M. Unverricht-Yeboah
E. Ainsbury
C. Bassinet
U. Kulka
U. Oestreicher
Y. Ristic
F. Trompier
A. Wojcik
L. Waldner
M. Port
Inter-laboratory comparison of gene expression biodosimetry for protracted radiation exposures as part of the RENEB and EURADOS WG10 2019 exercise
description Abstract Large-scale radiation emergency scenarios involving protracted low dose rate radiation exposure (e.g. a hidden radioactive source in a train) necessitate the development of high throughput methods for providing rapid individual dose estimates. During the RENEB (Running the European Network of Biodosimetry) 2019 exercise, four EDTA-blood samples were exposed to an Iridium-192 source (1.36 TBq, Tech-Ops 880 Sentinal) at varying distances and geometries. This resulted in protracted doses ranging between 0.2 and 2.4 Gy using dose rates of 1.5–40 mGy/min and exposure times of 1 or 2.5 h. Blood samples were exposed in thermo bottles that maintained temperatures between 39 and 27.7 °C. After exposure, EDTA-blood samples were transferred into PAXGene tubes to preserve RNA. RNA was isolated in one laboratory and aliquots of four blinded RNA were sent to another five teams for dose estimation based on gene expression changes. Using an X-ray machine, samples for two calibration curves (first: constant dose rate of 8.3 mGy/min and 0.5–8 h varying exposure times; second: varying dose rates of 0.5–8.3 mGy/min and 4 h exposure time) were generated for distribution. Assays were run in each laboratory according to locally established protocols using either a microarray platform (one team) or quantitative real-time PCR (qRT-PCR, five teams). The qRT-PCR measurements were highly reproducible with coefficient of variation below 15% in ≥ 75% of measurements resulting in reported dose estimates ranging between 0 and 0.5 Gy in all samples and in all laboratories. Up to twofold reductions in RNA copy numbers per degree Celsius relative to 37 °C were observed. However, when irradiating independent samples equivalent to the blinded samples but increasing the combined exposure and incubation time to 4 h at 37 °C, expected gene expression changes corresponding to the absorbed doses were observed. Clearly, time and an optimal temperature of 37 °C must be allowed for the biological response to manifest as gene expression changes prior to running the gene expression assay. In conclusion, dose reconstructions based on gene expression measurements are highly reproducible across different techniques, protocols and laboratories. Even a radiation dose of 0.25 Gy protracted over 4 h (1 mGy/min) can be identified. These results demonstrate the importance of the incubation conditions and time span between radiation exposure and measurements of gene expression changes when using this method in a field exercise or real emergency situation.
format article
author M. Abend
S. A. Amundson
C. Badie
K. Brzoska
R. Hargitai
R. Kriehuber
S. Schüle
E. Kis
S. A. Ghandhi
K. Lumniczky
S. R. Morton
G. O’Brien
D. Oskamp
P. Ostheim
C. Siebenwirth
I. Shuryak
T. Szatmári
M. Unverricht-Yeboah
E. Ainsbury
C. Bassinet
U. Kulka
U. Oestreicher
Y. Ristic
F. Trompier
A. Wojcik
L. Waldner
M. Port
author_facet M. Abend
S. A. Amundson
C. Badie
K. Brzoska
R. Hargitai
R. Kriehuber
S. Schüle
E. Kis
S. A. Ghandhi
K. Lumniczky
S. R. Morton
G. O’Brien
D. Oskamp
P. Ostheim
C. Siebenwirth
I. Shuryak
T. Szatmári
M. Unverricht-Yeboah
E. Ainsbury
C. Bassinet
U. Kulka
U. Oestreicher
Y. Ristic
F. Trompier
A. Wojcik
L. Waldner
M. Port
author_sort M. Abend
title Inter-laboratory comparison of gene expression biodosimetry for protracted radiation exposures as part of the RENEB and EURADOS WG10 2019 exercise
title_short Inter-laboratory comparison of gene expression biodosimetry for protracted radiation exposures as part of the RENEB and EURADOS WG10 2019 exercise
title_full Inter-laboratory comparison of gene expression biodosimetry for protracted radiation exposures as part of the RENEB and EURADOS WG10 2019 exercise
title_fullStr Inter-laboratory comparison of gene expression biodosimetry for protracted radiation exposures as part of the RENEB and EURADOS WG10 2019 exercise
title_full_unstemmed Inter-laboratory comparison of gene expression biodosimetry for protracted radiation exposures as part of the RENEB and EURADOS WG10 2019 exercise
title_sort inter-laboratory comparison of gene expression biodosimetry for protracted radiation exposures as part of the reneb and eurados wg10 2019 exercise
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/4d01b0e6a4464259a5c4985a6c86b723
work_keys_str_mv AT mabend interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise
AT saamundson interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise
AT cbadie interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise
AT kbrzoska interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise
AT rhargitai interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise
AT rkriehuber interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise
AT sschule interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise
AT ekis interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise
AT saghandhi interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise
AT klumniczky interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise
AT srmorton interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise
AT gobrien interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise
AT doskamp interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise
AT postheim interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise
AT csiebenwirth interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise
AT ishuryak interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise
AT tszatmari interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise
AT munverrichtyeboah interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise
AT eainsbury interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise
AT cbassinet interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise
AT ukulka interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise
AT uoestreicher interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise
AT yristic interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise
AT ftrompier interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise
AT awojcik interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise
AT lwaldner interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise
AT mport interlaboratorycomparisonofgeneexpressionbiodosimetryforprotractedradiationexposuresaspartoftherenebandeuradoswg102019exercise
_version_ 1718386170880065536