An existence result for quasilinear parabolic systems with lower order terms

In this paper we prove the existence of weak solutions for a class of quasilinear parabolic systems, which correspond to diffusion problems, in the form where Ω is a bounded open domain of be given and The function v belongs to is in a moving and dissolving substance, the dissolution is described...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Farah Balaadich, Elhoussine Azroul
Formato: article
Lenguaje:EN
Publicado: Vilnius Gediminas Technical University 2021
Materias:
Acceso en línea:https://doaj.org/article/4d030a5d5cf3429280b7c01803ca270c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In this paper we prove the existence of weak solutions for a class of quasilinear parabolic systems, which correspond to diffusion problems, in the form where Ω is a bounded open domain of be given and The function v belongs to is in a moving and dissolving substance, the dissolution is described by f and the motion by g. We prove the existence result by using Galerkin’s approximation and the theory of Young measures.