An existence result for quasilinear parabolic systems with lower order terms

In this paper we prove the existence of weak solutions for a class of quasilinear parabolic systems, which correspond to diffusion problems, in the form where Ω is a bounded open domain of be given and The function v belongs to is in a moving and dissolving substance, the dissolution is described...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Farah Balaadich, Elhoussine Azroul
Formato: article
Lenguaje:EN
Publicado: Vilnius Gediminas Technical University 2021
Materias:
Acceso en línea:https://doaj.org/article/4d030a5d5cf3429280b7c01803ca270c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4d030a5d5cf3429280b7c01803ca270c
record_format dspace
spelling oai:doaj.org-article:4d030a5d5cf3429280b7c01803ca270c2021-11-29T09:14:00ZAn existence result for quasilinear parabolic systems with lower order terms1392-62921648-351010.3846/mma.2021.13553https://doaj.org/article/4d030a5d5cf3429280b7c01803ca270c2021-11-01T00:00:00Zhttps://journals.vgtu.lt/index.php/MMA/article/view/13553https://doaj.org/toc/1392-6292https://doaj.org/toc/1648-3510In this paper we prove the existence of weak solutions for a class of quasilinear parabolic systems, which correspond to diffusion problems, in the form where Ω is a bounded open domain of be given and The function v belongs to is in a moving and dissolving substance, the dissolution is described by f and the motion by g. We prove the existence result by using Galerkin’s approximation and the theory of Young measures.Farah BalaadichElhoussine AzroulVilnius Gediminas Technical Universityarticlequasilinear parabolic systemsweak solutionsyoung measuresMathematicsQA1-939ENMathematical Modelling and Analysis, Vol 26, Iss 4, Pp 669-683 (2021)
institution DOAJ
collection DOAJ
language EN
topic quasilinear parabolic systems
weak solutions
young measures
Mathematics
QA1-939
spellingShingle quasilinear parabolic systems
weak solutions
young measures
Mathematics
QA1-939
Farah Balaadich
Elhoussine Azroul
An existence result for quasilinear parabolic systems with lower order terms
description In this paper we prove the existence of weak solutions for a class of quasilinear parabolic systems, which correspond to diffusion problems, in the form where Ω is a bounded open domain of be given and The function v belongs to is in a moving and dissolving substance, the dissolution is described by f and the motion by g. We prove the existence result by using Galerkin’s approximation and the theory of Young measures.
format article
author Farah Balaadich
Elhoussine Azroul
author_facet Farah Balaadich
Elhoussine Azroul
author_sort Farah Balaadich
title An existence result for quasilinear parabolic systems with lower order terms
title_short An existence result for quasilinear parabolic systems with lower order terms
title_full An existence result for quasilinear parabolic systems with lower order terms
title_fullStr An existence result for quasilinear parabolic systems with lower order terms
title_full_unstemmed An existence result for quasilinear parabolic systems with lower order terms
title_sort existence result for quasilinear parabolic systems with lower order terms
publisher Vilnius Gediminas Technical University
publishDate 2021
url https://doaj.org/article/4d030a5d5cf3429280b7c01803ca270c
work_keys_str_mv AT farahbalaadich anexistenceresultforquasilinearparabolicsystemswithlowerorderterms
AT elhoussineazroul anexistenceresultforquasilinearparabolicsystemswithlowerorderterms
AT farahbalaadich existenceresultforquasilinearparabolicsystemswithlowerorderterms
AT elhoussineazroul existenceresultforquasilinearparabolicsystemswithlowerorderterms
_version_ 1718407398188646400