Characterization of pea seed nutritional value within a diverse population of Pisum sativum.

Micronutrient malnutrition is a global concern that affects more than two billion people worldwide. Pea (Pisum sativum) is a nutritious pulse crop with potential to assist in tackling hidden hunger. Here we report seed ionomic data of 96 diverse pea accessions collected via inductively coupled plasm...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Gokhan Hacisalihoglu, Nicole S Beisel, A Mark Settles
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/4d13c03adcc144a2b456d7625f11d8d8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Micronutrient malnutrition is a global concern that affects more than two billion people worldwide. Pea (Pisum sativum) is a nutritious pulse crop with potential to assist in tackling hidden hunger. Here we report seed ionomic data of 96 diverse pea accessions collected via inductively coupled plasma mass spectrometry (ICP-MS). We found a 100 g serving of peas provides the following average percent daily value for U.S. recommendations: 8% Ca, 39% Mg, 73% Cu, 37% Fe, 63% Mn, 45% Zn, 28% K, and 43% P. Correlations were observed between the majority of minerals tested suggesting strong interrelationships between mineral concentration levels. Hierarchical clustering identified fifteen accessions with high-ranking mineral concentrations. Thirty accessions could be compared to earlier inductively coupled optical emission spectrometry (ICP-OES) data, which revealed significant differences particularly for elements at extreme low or high levels of accumulation. These results improve our understanding of the range of variation in mineral content found in peas and provide additional mineral data resources for germplasm selection.