Deep neural networks for accurate predictions of crystal stability
Crystal stability prediction is of paramount importance for novel material discovery, with theoretical approaches alternative to expensive standard schemes highly desired. Here the authors develop a deep learning approach which, just using two descriptors, provides crystalline formation energies wit...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4d18a79643814bec9e968a7650b9f51d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Crystal stability prediction is of paramount importance for novel material discovery, with theoretical approaches alternative to expensive standard schemes highly desired. Here the authors develop a deep learning approach which, just using two descriptors, provides crystalline formation energies with very high accuracy. |
---|