Deep neural networks for accurate predictions of crystal stability
Crystal stability prediction is of paramount importance for novel material discovery, with theoretical approaches alternative to expensive standard schemes highly desired. Here the authors develop a deep learning approach which, just using two descriptors, provides crystalline formation energies wit...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4d18a79643814bec9e968a7650b9f51d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:4d18a79643814bec9e968a7650b9f51d |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:4d18a79643814bec9e968a7650b9f51d2021-12-02T14:41:28ZDeep neural networks for accurate predictions of crystal stability10.1038/s41467-018-06322-x2041-1723https://doaj.org/article/4d18a79643814bec9e968a7650b9f51d2018-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-06322-xhttps://doaj.org/toc/2041-1723Crystal stability prediction is of paramount importance for novel material discovery, with theoretical approaches alternative to expensive standard schemes highly desired. Here the authors develop a deep learning approach which, just using two descriptors, provides crystalline formation energies with very high accuracy.Weike YeChi ChenZhenbin WangIek-Heng ChuShyue Ping OngNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-6 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Weike Ye Chi Chen Zhenbin Wang Iek-Heng Chu Shyue Ping Ong Deep neural networks for accurate predictions of crystal stability |
description |
Crystal stability prediction is of paramount importance for novel material discovery, with theoretical approaches alternative to expensive standard schemes highly desired. Here the authors develop a deep learning approach which, just using two descriptors, provides crystalline formation energies with very high accuracy. |
format |
article |
author |
Weike Ye Chi Chen Zhenbin Wang Iek-Heng Chu Shyue Ping Ong |
author_facet |
Weike Ye Chi Chen Zhenbin Wang Iek-Heng Chu Shyue Ping Ong |
author_sort |
Weike Ye |
title |
Deep neural networks for accurate predictions of crystal stability |
title_short |
Deep neural networks for accurate predictions of crystal stability |
title_full |
Deep neural networks for accurate predictions of crystal stability |
title_fullStr |
Deep neural networks for accurate predictions of crystal stability |
title_full_unstemmed |
Deep neural networks for accurate predictions of crystal stability |
title_sort |
deep neural networks for accurate predictions of crystal stability |
publisher |
Nature Portfolio |
publishDate |
2018 |
url |
https://doaj.org/article/4d18a79643814bec9e968a7650b9f51d |
work_keys_str_mv |
AT weikeye deepneuralnetworksforaccuratepredictionsofcrystalstability AT chichen deepneuralnetworksforaccuratepredictionsofcrystalstability AT zhenbinwang deepneuralnetworksforaccuratepredictionsofcrystalstability AT iekhengchu deepneuralnetworksforaccuratepredictionsofcrystalstability AT shyuepingong deepneuralnetworksforaccuratepredictionsofcrystalstability |
_version_ |
1718389868924502016 |