Deep neural networks for accurate predictions of crystal stability

Crystal stability prediction is of paramount importance for novel material discovery, with theoretical approaches alternative to expensive standard schemes highly desired. Here the authors develop a deep learning approach which, just using two descriptors, provides crystalline formation energies wit...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Weike Ye, Chi Chen, Zhenbin Wang, Iek-Heng Chu, Shyue Ping Ong
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/4d18a79643814bec9e968a7650b9f51d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4d18a79643814bec9e968a7650b9f51d
record_format dspace
spelling oai:doaj.org-article:4d18a79643814bec9e968a7650b9f51d2021-12-02T14:41:28ZDeep neural networks for accurate predictions of crystal stability10.1038/s41467-018-06322-x2041-1723https://doaj.org/article/4d18a79643814bec9e968a7650b9f51d2018-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-06322-xhttps://doaj.org/toc/2041-1723Crystal stability prediction is of paramount importance for novel material discovery, with theoretical approaches alternative to expensive standard schemes highly desired. Here the authors develop a deep learning approach which, just using two descriptors, provides crystalline formation energies with very high accuracy.Weike YeChi ChenZhenbin WangIek-Heng ChuShyue Ping OngNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-6 (2018)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Weike Ye
Chi Chen
Zhenbin Wang
Iek-Heng Chu
Shyue Ping Ong
Deep neural networks for accurate predictions of crystal stability
description Crystal stability prediction is of paramount importance for novel material discovery, with theoretical approaches alternative to expensive standard schemes highly desired. Here the authors develop a deep learning approach which, just using two descriptors, provides crystalline formation energies with very high accuracy.
format article
author Weike Ye
Chi Chen
Zhenbin Wang
Iek-Heng Chu
Shyue Ping Ong
author_facet Weike Ye
Chi Chen
Zhenbin Wang
Iek-Heng Chu
Shyue Ping Ong
author_sort Weike Ye
title Deep neural networks for accurate predictions of crystal stability
title_short Deep neural networks for accurate predictions of crystal stability
title_full Deep neural networks for accurate predictions of crystal stability
title_fullStr Deep neural networks for accurate predictions of crystal stability
title_full_unstemmed Deep neural networks for accurate predictions of crystal stability
title_sort deep neural networks for accurate predictions of crystal stability
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/4d18a79643814bec9e968a7650b9f51d
work_keys_str_mv AT weikeye deepneuralnetworksforaccuratepredictionsofcrystalstability
AT chichen deepneuralnetworksforaccuratepredictionsofcrystalstability
AT zhenbinwang deepneuralnetworksforaccuratepredictionsofcrystalstability
AT iekhengchu deepneuralnetworksforaccuratepredictionsofcrystalstability
AT shyuepingong deepneuralnetworksforaccuratepredictionsofcrystalstability
_version_ 1718389868924502016