Engineering PQS biosynthesis pathway for enhancement of bioelectricity production in pseudomonas aeruginosa microbial fuel cells.

The biosynthesis of the redox shuttle, phenazines, in Pseudomonas aeruginosa, an ubiquitous microorganism in wastewater microflora, is regulated by the 2-heptyl-3,4-dihydroxyquinoline (PQS) quorum-sensing system. However, PQS inhibits anaerobic growth of P. aeruginosa. We constructed a P. aeruginosa...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Victor Bochuan Wang, Song-Lin Chua, Bin Cao, Thomas Seviour, Victor J Nesatyy, Enrico Marsili, Staffan Kjelleberg, Michael Givskov, Tim Tolker-Nielsen, Hao Song, Joachim Say Chye Loo, Liang Yang
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2013
Materias:
R
Q
Acceso en línea:https://doaj.org/article/4d1cb57c12dc44a59bddbdd730c55e43
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4d1cb57c12dc44a59bddbdd730c55e43
record_format dspace
spelling oai:doaj.org-article:4d1cb57c12dc44a59bddbdd730c55e432021-11-18T07:45:12ZEngineering PQS biosynthesis pathway for enhancement of bioelectricity production in pseudomonas aeruginosa microbial fuel cells.1932-620310.1371/journal.pone.0063129https://doaj.org/article/4d1cb57c12dc44a59bddbdd730c55e432013-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23700414/pdf/?tool=EBIhttps://doaj.org/toc/1932-6203The biosynthesis of the redox shuttle, phenazines, in Pseudomonas aeruginosa, an ubiquitous microorganism in wastewater microflora, is regulated by the 2-heptyl-3,4-dihydroxyquinoline (PQS) quorum-sensing system. However, PQS inhibits anaerobic growth of P. aeruginosa. We constructed a P. aeruginosa strain that produces higher concentrations of phenazines under anaerobic conditions by over-expressing the PqsE effector in a PQS negative ΔpqsC mutant. The engineered strain exhibited an improved electrical performance in microbial fuel cells (MFCs) and potentiostat-controlled electrochemical cells with an approximate five-fold increase of maximum current density relative to the parent strain. Electrochemical analysis showed that the current increase correlates with an over-synthesis of phenazines. These results therefore demonstrate that targeting microbial cell-to-cell communication by genetic engineering is a suitable technique to improve power output of bioelectrochemical systems.Victor Bochuan WangSong-Lin ChuaBin CaoThomas SeviourVictor J NesatyyEnrico MarsiliStaffan KjellebergMichael GivskovTim Tolker-NielsenHao SongJoachim Say Chye LooLiang YangPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 8, Iss 5, p e63129 (2013)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Victor Bochuan Wang
Song-Lin Chua
Bin Cao
Thomas Seviour
Victor J Nesatyy
Enrico Marsili
Staffan Kjelleberg
Michael Givskov
Tim Tolker-Nielsen
Hao Song
Joachim Say Chye Loo
Liang Yang
Engineering PQS biosynthesis pathway for enhancement of bioelectricity production in pseudomonas aeruginosa microbial fuel cells.
description The biosynthesis of the redox shuttle, phenazines, in Pseudomonas aeruginosa, an ubiquitous microorganism in wastewater microflora, is regulated by the 2-heptyl-3,4-dihydroxyquinoline (PQS) quorum-sensing system. However, PQS inhibits anaerobic growth of P. aeruginosa. We constructed a P. aeruginosa strain that produces higher concentrations of phenazines under anaerobic conditions by over-expressing the PqsE effector in a PQS negative ΔpqsC mutant. The engineered strain exhibited an improved electrical performance in microbial fuel cells (MFCs) and potentiostat-controlled electrochemical cells with an approximate five-fold increase of maximum current density relative to the parent strain. Electrochemical analysis showed that the current increase correlates with an over-synthesis of phenazines. These results therefore demonstrate that targeting microbial cell-to-cell communication by genetic engineering is a suitable technique to improve power output of bioelectrochemical systems.
format article
author Victor Bochuan Wang
Song-Lin Chua
Bin Cao
Thomas Seviour
Victor J Nesatyy
Enrico Marsili
Staffan Kjelleberg
Michael Givskov
Tim Tolker-Nielsen
Hao Song
Joachim Say Chye Loo
Liang Yang
author_facet Victor Bochuan Wang
Song-Lin Chua
Bin Cao
Thomas Seviour
Victor J Nesatyy
Enrico Marsili
Staffan Kjelleberg
Michael Givskov
Tim Tolker-Nielsen
Hao Song
Joachim Say Chye Loo
Liang Yang
author_sort Victor Bochuan Wang
title Engineering PQS biosynthesis pathway for enhancement of bioelectricity production in pseudomonas aeruginosa microbial fuel cells.
title_short Engineering PQS biosynthesis pathway for enhancement of bioelectricity production in pseudomonas aeruginosa microbial fuel cells.
title_full Engineering PQS biosynthesis pathway for enhancement of bioelectricity production in pseudomonas aeruginosa microbial fuel cells.
title_fullStr Engineering PQS biosynthesis pathway for enhancement of bioelectricity production in pseudomonas aeruginosa microbial fuel cells.
title_full_unstemmed Engineering PQS biosynthesis pathway for enhancement of bioelectricity production in pseudomonas aeruginosa microbial fuel cells.
title_sort engineering pqs biosynthesis pathway for enhancement of bioelectricity production in pseudomonas aeruginosa microbial fuel cells.
publisher Public Library of Science (PLoS)
publishDate 2013
url https://doaj.org/article/4d1cb57c12dc44a59bddbdd730c55e43
work_keys_str_mv AT victorbochuanwang engineeringpqsbiosynthesispathwayforenhancementofbioelectricityproductioninpseudomonasaeruginosamicrobialfuelcells
AT songlinchua engineeringpqsbiosynthesispathwayforenhancementofbioelectricityproductioninpseudomonasaeruginosamicrobialfuelcells
AT bincao engineeringpqsbiosynthesispathwayforenhancementofbioelectricityproductioninpseudomonasaeruginosamicrobialfuelcells
AT thomasseviour engineeringpqsbiosynthesispathwayforenhancementofbioelectricityproductioninpseudomonasaeruginosamicrobialfuelcells
AT victorjnesatyy engineeringpqsbiosynthesispathwayforenhancementofbioelectricityproductioninpseudomonasaeruginosamicrobialfuelcells
AT enricomarsili engineeringpqsbiosynthesispathwayforenhancementofbioelectricityproductioninpseudomonasaeruginosamicrobialfuelcells
AT staffankjelleberg engineeringpqsbiosynthesispathwayforenhancementofbioelectricityproductioninpseudomonasaeruginosamicrobialfuelcells
AT michaelgivskov engineeringpqsbiosynthesispathwayforenhancementofbioelectricityproductioninpseudomonasaeruginosamicrobialfuelcells
AT timtolkernielsen engineeringpqsbiosynthesispathwayforenhancementofbioelectricityproductioninpseudomonasaeruginosamicrobialfuelcells
AT haosong engineeringpqsbiosynthesispathwayforenhancementofbioelectricityproductioninpseudomonasaeruginosamicrobialfuelcells
AT joachimsaychyeloo engineeringpqsbiosynthesispathwayforenhancementofbioelectricityproductioninpseudomonasaeruginosamicrobialfuelcells
AT liangyang engineeringpqsbiosynthesispathwayforenhancementofbioelectricityproductioninpseudomonasaeruginosamicrobialfuelcells
_version_ 1718423034177519616