Primerjava različnih regresijskih modelov za napovedovanje debelinskega priraščanja jelke

We present seven alternative statistical models for modelling tree diameter increment with data from permanent sampling plots. In addition to the polynomial regression model, we present a regression model with added random noise, a mixed linear model, regression with natural splines, and th...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Andrej Ficko, Vasilije Trifković
Formato: article
Lenguaje:DE
EN
ES
FR
SL
Publicado: Slovenian Forestry Institute 2021
Materias:
Acceso en línea:https://doaj.org/article/4d314a1af29241888b2a4e2772170b98
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4d314a1af29241888b2a4e2772170b98
record_format dspace
spelling oai:doaj.org-article:4d314a1af29241888b2a4e2772170b982021-12-02T10:47:30ZPrimerjava različnih regresijskih modelov za napovedovanje debelinskega priraščanja jelke2335-31122335-395310.20315/ASetL.126.6https://doaj.org/article/4d314a1af29241888b2a4e2772170b982021-12-01T00:00:00Zhttps://dirros.openscience.si/IzpisGradiva.php?id=14645https://doaj.org/toc/2335-3112https://doaj.org/toc/2335-3953 We present seven alternative statistical models for modelling tree diameter increment with data from permanent sampling plots. In addition to the polynomial regression model, we present a regression model with added random noise, a mixed linear model, regression with natural splines, and three models with limited dependent variables: truncated regression, tobit regression and grouped data regression. The models may be used when dealing with truncated or censored variables, biased estimation of the increment due to censoring and rounding down, or when having multilevel data. The parametrization of the models was done using 21,013 fir trees on 4,405 plots in the period 1990–2014 in uneven-aged Dinaric fir-beech forests. All models showed a similar effect of tree diameter, stand basal area, basal area of larger trees, diameter structure diversity, altitude and slope. There were only minor differences in the regression coefficients and fit measures. The highest increment predictions were given by the tobit model. The mixed model fit the data best and, compared to the other models, predicted a slower decrease in the growth of large-diameter trees after growth culmination.Andrej FickoVasilije TrifkovićSlovenian Forestry InstitutearticleForestrySD1-669.5Environmental sciencesGE1-350DEENESFRSLActa Silvae et Ligni, Vol 126, Pp 61-76 (2021)
institution DOAJ
collection DOAJ
language DE
EN
ES
FR
SL
topic Forestry
SD1-669.5
Environmental sciences
GE1-350
spellingShingle Forestry
SD1-669.5
Environmental sciences
GE1-350
Andrej Ficko
Vasilije Trifković
Primerjava različnih regresijskih modelov za napovedovanje debelinskega priraščanja jelke
description We present seven alternative statistical models for modelling tree diameter increment with data from permanent sampling plots. In addition to the polynomial regression model, we present a regression model with added random noise, a mixed linear model, regression with natural splines, and three models with limited dependent variables: truncated regression, tobit regression and grouped data regression. The models may be used when dealing with truncated or censored variables, biased estimation of the increment due to censoring and rounding down, or when having multilevel data. The parametrization of the models was done using 21,013 fir trees on 4,405 plots in the period 1990–2014 in uneven-aged Dinaric fir-beech forests. All models showed a similar effect of tree diameter, stand basal area, basal area of larger trees, diameter structure diversity, altitude and slope. There were only minor differences in the regression coefficients and fit measures. The highest increment predictions were given by the tobit model. The mixed model fit the data best and, compared to the other models, predicted a slower decrease in the growth of large-diameter trees after growth culmination.
format article
author Andrej Ficko
Vasilije Trifković
author_facet Andrej Ficko
Vasilije Trifković
author_sort Andrej Ficko
title Primerjava različnih regresijskih modelov za napovedovanje debelinskega priraščanja jelke
title_short Primerjava različnih regresijskih modelov za napovedovanje debelinskega priraščanja jelke
title_full Primerjava različnih regresijskih modelov za napovedovanje debelinskega priraščanja jelke
title_fullStr Primerjava različnih regresijskih modelov za napovedovanje debelinskega priraščanja jelke
title_full_unstemmed Primerjava različnih regresijskih modelov za napovedovanje debelinskega priraščanja jelke
title_sort primerjava različnih regresijskih modelov za napovedovanje debelinskega priraščanja jelke
publisher Slovenian Forestry Institute
publishDate 2021
url https://doaj.org/article/4d314a1af29241888b2a4e2772170b98
work_keys_str_mv AT andrejficko primerjavarazlicnihregresijskihmodelovzanapovedovanjedebelinskegaprirascanjajelke
AT vasilijetrifkovic primerjavarazlicnihregresijskihmodelovzanapovedovanjedebelinskegaprirascanjajelke
_version_ 1718396710484443136