In vivo targeted DamID identifies CHD8 genomic targets in fetal mouse brain

Summary: Genetic studies of autism have revealed causal roles for chromatin remodeling gene mutations. Chromodomain helicase DNA binding protein 8 (CHD8) encodes a chromatin remodeler with significant de novo mutation rates in sporadic autism. However, relationships between CHD8 genomic function and...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: A. Ayanna Wade, Jelle van den Ameele, Seth W. Cheetham, Rebecca Yakob, Andrea H. Brand, Alex S. Nord
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/4d31afdb8ce6460180b433cbe96604ab
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Summary: Genetic studies of autism have revealed causal roles for chromatin remodeling gene mutations. Chromodomain helicase DNA binding protein 8 (CHD8) encodes a chromatin remodeler with significant de novo mutation rates in sporadic autism. However, relationships between CHD8 genomic function and autism-relevant biology remain poorly elucidated. Published studies utilizing ChIP-seq to map CHD8 protein-DNA interactions have high variability, consistent with technical challenges and limitations associated with this method. Thus, complementary approaches are needed to establish CHD8 genomic targets and regulatory functions in developing brain. We used in utero CHD8 Targeted DamID followed by sequencing (TaDa-seq) to characterize CHD8 binding in embryonic mouse cortex. CHD8 TaDa-seq reproduced interaction patterns observed from ChIP-seq and further highlighted CHD8 distal interactions associated with neuronal loci. This study establishes TaDa-seq as a useful alternative for mapping protein-DNA interactions in vivo and provides insights into the regulatory targets of CHD8 and autism-relevant pathophysiology associated with CHD8 mutations.