Kinked silicon nanowires-enabled interweaving electrode configuration for lithium-ion batteries

Abstract A tri-dimensional interweaving kinked silicon nanowires (k-SiNWs) assembly, with a Ni current collector co-integrated, is evaluated as electrode configuration for lithium ion batteries. The large-scale fabrication of k-SiNWs is based on a procedure for continuous metal assisted chemical etc...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Georgiana Sandu, Michael Coulombier, Vishank Kumar, Hailu G. Kassa, Ionel Avram, Ran Ye, Antoine Stopin, Davide Bonifazi, Jean-François Gohy, Philippe Leclère, Xavier Gonze, Thomas Pardoen, Alexandru Vlad, Sorin Melinte
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
R
Q
Acceso en línea:https://doaj.org/article/4d3d61cc5f5249b79f91790f2769a7d4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4d3d61cc5f5249b79f91790f2769a7d4
record_format dspace
spelling oai:doaj.org-article:4d3d61cc5f5249b79f91790f2769a7d42021-12-02T15:07:50ZKinked silicon nanowires-enabled interweaving electrode configuration for lithium-ion batteries10.1038/s41598-018-28108-32045-2322https://doaj.org/article/4d3d61cc5f5249b79f91790f2769a7d42018-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-018-28108-3https://doaj.org/toc/2045-2322Abstract A tri-dimensional interweaving kinked silicon nanowires (k-SiNWs) assembly, with a Ni current collector co-integrated, is evaluated as electrode configuration for lithium ion batteries. The large-scale fabrication of k-SiNWs is based on a procedure for continuous metal assisted chemical etching of Si, supported by a chemical peeling step that enables the reuse of the Si substrate. The kinks are triggered by a simple, repetitive etch-quench sequence in a HF and H2O2-based etchant. We find that the inter-locking frameworks of k-SiNWs and multi-walled carbon nanotubes exhibit beneficial mechanical properties with a foam-like behavior amplified by the kinks and a suitable porosity for a minimal electrode deformation upon Li insertion. In addition, ionic liquid electrolyte systems associated with the integrated Ni current collector repress the detrimental effects related to the Si-Li alloying reaction, enabling high cycling stability with 80% capacity retention (1695 mAh/gSi) after 100 cycles. Areal capacities of 2.42 mAh/cm2 (1276 mAh/gelectrode) can be achieved at the maximum evaluated thickness (corresponding to 1.3 mgSi/cm2). This work emphasizes the versatility of the metal assisted chemical etching for the synthesis of advanced Si nanostructures for high performance lithium ion battery electrodes.Georgiana SanduMichael CoulombierVishank KumarHailu G. KassaIonel AvramRan YeAntoine StopinDavide BonifaziJean-François GohyPhilippe LeclèreXavier GonzeThomas PardoenAlexandru VladSorin MelinteNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 8, Iss 1, Pp 1-11 (2018)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Georgiana Sandu
Michael Coulombier
Vishank Kumar
Hailu G. Kassa
Ionel Avram
Ran Ye
Antoine Stopin
Davide Bonifazi
Jean-François Gohy
Philippe Leclère
Xavier Gonze
Thomas Pardoen
Alexandru Vlad
Sorin Melinte
Kinked silicon nanowires-enabled interweaving electrode configuration for lithium-ion batteries
description Abstract A tri-dimensional interweaving kinked silicon nanowires (k-SiNWs) assembly, with a Ni current collector co-integrated, is evaluated as electrode configuration for lithium ion batteries. The large-scale fabrication of k-SiNWs is based on a procedure for continuous metal assisted chemical etching of Si, supported by a chemical peeling step that enables the reuse of the Si substrate. The kinks are triggered by a simple, repetitive etch-quench sequence in a HF and H2O2-based etchant. We find that the inter-locking frameworks of k-SiNWs and multi-walled carbon nanotubes exhibit beneficial mechanical properties with a foam-like behavior amplified by the kinks and a suitable porosity for a minimal electrode deformation upon Li insertion. In addition, ionic liquid electrolyte systems associated with the integrated Ni current collector repress the detrimental effects related to the Si-Li alloying reaction, enabling high cycling stability with 80% capacity retention (1695 mAh/gSi) after 100 cycles. Areal capacities of 2.42 mAh/cm2 (1276 mAh/gelectrode) can be achieved at the maximum evaluated thickness (corresponding to 1.3 mgSi/cm2). This work emphasizes the versatility of the metal assisted chemical etching for the synthesis of advanced Si nanostructures for high performance lithium ion battery electrodes.
format article
author Georgiana Sandu
Michael Coulombier
Vishank Kumar
Hailu G. Kassa
Ionel Avram
Ran Ye
Antoine Stopin
Davide Bonifazi
Jean-François Gohy
Philippe Leclère
Xavier Gonze
Thomas Pardoen
Alexandru Vlad
Sorin Melinte
author_facet Georgiana Sandu
Michael Coulombier
Vishank Kumar
Hailu G. Kassa
Ionel Avram
Ran Ye
Antoine Stopin
Davide Bonifazi
Jean-François Gohy
Philippe Leclère
Xavier Gonze
Thomas Pardoen
Alexandru Vlad
Sorin Melinte
author_sort Georgiana Sandu
title Kinked silicon nanowires-enabled interweaving electrode configuration for lithium-ion batteries
title_short Kinked silicon nanowires-enabled interweaving electrode configuration for lithium-ion batteries
title_full Kinked silicon nanowires-enabled interweaving electrode configuration for lithium-ion batteries
title_fullStr Kinked silicon nanowires-enabled interweaving electrode configuration for lithium-ion batteries
title_full_unstemmed Kinked silicon nanowires-enabled interweaving electrode configuration for lithium-ion batteries
title_sort kinked silicon nanowires-enabled interweaving electrode configuration for lithium-ion batteries
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/4d3d61cc5f5249b79f91790f2769a7d4
work_keys_str_mv AT georgianasandu kinkedsiliconnanowiresenabledinterweavingelectrodeconfigurationforlithiumionbatteries
AT michaelcoulombier kinkedsiliconnanowiresenabledinterweavingelectrodeconfigurationforlithiumionbatteries
AT vishankkumar kinkedsiliconnanowiresenabledinterweavingelectrodeconfigurationforlithiumionbatteries
AT hailugkassa kinkedsiliconnanowiresenabledinterweavingelectrodeconfigurationforlithiumionbatteries
AT ionelavram kinkedsiliconnanowiresenabledinterweavingelectrodeconfigurationforlithiumionbatteries
AT ranye kinkedsiliconnanowiresenabledinterweavingelectrodeconfigurationforlithiumionbatteries
AT antoinestopin kinkedsiliconnanowiresenabledinterweavingelectrodeconfigurationforlithiumionbatteries
AT davidebonifazi kinkedsiliconnanowiresenabledinterweavingelectrodeconfigurationforlithiumionbatteries
AT jeanfrancoisgohy kinkedsiliconnanowiresenabledinterweavingelectrodeconfigurationforlithiumionbatteries
AT philippeleclere kinkedsiliconnanowiresenabledinterweavingelectrodeconfigurationforlithiumionbatteries
AT xaviergonze kinkedsiliconnanowiresenabledinterweavingelectrodeconfigurationforlithiumionbatteries
AT thomaspardoen kinkedsiliconnanowiresenabledinterweavingelectrodeconfigurationforlithiumionbatteries
AT alexandruvlad kinkedsiliconnanowiresenabledinterweavingelectrodeconfigurationforlithiumionbatteries
AT sorinmelinte kinkedsiliconnanowiresenabledinterweavingelectrodeconfigurationforlithiumionbatteries
_version_ 1718388382873157632