ArtinM Grafted Phospholipid Nanoparticles for Enhancing Antibiotic Cellular Uptake Against Intracellular Infection
Tri Suciati,1 Safira Nafisa,2 Tantri Liris Nareswari,1 Meta Juniatik,1 Elin Julianti,1 Marlia Singgih Wibowo,1 Titah Yudhistira,3 Ihsanawati Ihsanawati,4 Yani Triyani,5 Khairurrijal Khairurrijal4,6 1School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia; 2Faculty of Pharmacy, Pancas...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4d5d841c929e45c1a4df30ac9f4c15d6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:4d5d841c929e45c1a4df30ac9f4c15d6 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:4d5d841c929e45c1a4df30ac9f4c15d62021-12-02T13:42:12ZArtinM Grafted Phospholipid Nanoparticles for Enhancing Antibiotic Cellular Uptake Against Intracellular Infection1178-2013https://doaj.org/article/4d5d841c929e45c1a4df30ac9f4c15d62020-11-01T00:00:00Zhttps://www.dovepress.com/artinm-grafted-phospholipid-nanoparticles-for-enhancing-antibiotic-cel-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Tri Suciati,1 Safira Nafisa,2 Tantri Liris Nareswari,1 Meta Juniatik,1 Elin Julianti,1 Marlia Singgih Wibowo,1 Titah Yudhistira,3 Ihsanawati Ihsanawati,4 Yani Triyani,5 Khairurrijal Khairurrijal4,6 1School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia; 2Faculty of Pharmacy, Pancasila University, Jakarta, Indonesia; 3Faculty of Industrial Technology, Bandung Institute of Technology, Bandung, Indonesia; 4Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung, Indonesia; 5Faculty of Medicine, Bandung Islamic University, Bandung, Indonesia; 6Bioscience and Biotechnology Research Center, Bandung Institute of Technology, Bandung, IndonesiaCorrespondence: Tri SuciatiSchool of Pharmacy, Bandung Institute of Technology, Yusuf Panigoro Building, Ganesa 10, Bandung 40132, IndonesiaTel/Fax +62 22 2504852Email tri.suciati@fa.itb.ac.idBackground and Aim: An antimicrobial delivery in the form of surface-modified lectin of lipid nanoparticles was proposed to improve cellular accumulation. ArtinM, an active toll-like receptor 2 (TLR2) agonist lectin isolated from cempedak (Arthocarpus integrifolia) seeds, was selected to induce cellular engulfment of nanoparticles within infected host cells.Materials and Methods: Lipid nanoparticles were prepared using the emulsification technique before electrostatic adsorption of artinM. The formula comprising of rifampicin, soy phospholipid, and polysorbate 80 was optimized by Box-Behnken design to produce the desired particle size, entrapment efficiency, and drug loading. The optimum formula was characterized for morphology, in vitro release, and cellular transport.Results and Discussion: Soy phospholipid showed a profound effect on controlling drug loading and entrapment efficiency. Owing to its surface activity, polysorbate 80 contributed significantly to reduce particle size; however, a higher ratio to lipid concentration resulted in a decrease of rifampicin encapsulation. The adsorption of artinM on the surface of nanoparticles was accomplished by electrostatic binding at pH 4, where this process maintained the stability of encapsulated rifampicin. A high proportion of artinM adsorbed on the surface of the nanoparticles shown by haemagglutination assay, zeta potential measurement, and transmission electron microscopy imaging. Cellular uptake revealed by confocal microscopy showed the success in transporting Nile-red labelled nanoparticles across fibroblast cells.Conclusion: The delivery system of nanoparticles bearing artinM becomes a potential platform technology for antibiotic targeting in the treatment of life-threatening chronic diseases caused by intracellular infections.Keywords: surface modification, Box–Behnken design, antibiotic, TLR2 agonists, botanical lectin, electrostatic bindingSuciati TNafisa SNareswari TLJuniatik MJulianti EWibowo MSYudhistira TIhsanawati ITriyani YKhairurrijal KDove Medical Pressarticlesurface modificationbox-behnken designantibiotictlr2 agonistsbotanical lectinelectrostatic bindingMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 15, Pp 8829-8843 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
surface modification box-behnken design antibiotic tlr2 agonists botanical lectin electrostatic binding Medicine (General) R5-920 |
spellingShingle |
surface modification box-behnken design antibiotic tlr2 agonists botanical lectin electrostatic binding Medicine (General) R5-920 Suciati T Nafisa S Nareswari TL Juniatik M Julianti E Wibowo MS Yudhistira T Ihsanawati I Triyani Y Khairurrijal K ArtinM Grafted Phospholipid Nanoparticles for Enhancing Antibiotic Cellular Uptake Against Intracellular Infection |
description |
Tri Suciati,1 Safira Nafisa,2 Tantri Liris Nareswari,1 Meta Juniatik,1 Elin Julianti,1 Marlia Singgih Wibowo,1 Titah Yudhistira,3 Ihsanawati Ihsanawati,4 Yani Triyani,5 Khairurrijal Khairurrijal4,6 1School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia; 2Faculty of Pharmacy, Pancasila University, Jakarta, Indonesia; 3Faculty of Industrial Technology, Bandung Institute of Technology, Bandung, Indonesia; 4Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung, Indonesia; 5Faculty of Medicine, Bandung Islamic University, Bandung, Indonesia; 6Bioscience and Biotechnology Research Center, Bandung Institute of Technology, Bandung, IndonesiaCorrespondence: Tri SuciatiSchool of Pharmacy, Bandung Institute of Technology, Yusuf Panigoro Building, Ganesa 10, Bandung 40132, IndonesiaTel/Fax +62 22 2504852Email tri.suciati@fa.itb.ac.idBackground and Aim: An antimicrobial delivery in the form of surface-modified lectin of lipid nanoparticles was proposed to improve cellular accumulation. ArtinM, an active toll-like receptor 2 (TLR2) agonist lectin isolated from cempedak (Arthocarpus integrifolia) seeds, was selected to induce cellular engulfment of nanoparticles within infected host cells.Materials and Methods: Lipid nanoparticles were prepared using the emulsification technique before electrostatic adsorption of artinM. The formula comprising of rifampicin, soy phospholipid, and polysorbate 80 was optimized by Box-Behnken design to produce the desired particle size, entrapment efficiency, and drug loading. The optimum formula was characterized for morphology, in vitro release, and cellular transport.Results and Discussion: Soy phospholipid showed a profound effect on controlling drug loading and entrapment efficiency. Owing to its surface activity, polysorbate 80 contributed significantly to reduce particle size; however, a higher ratio to lipid concentration resulted in a decrease of rifampicin encapsulation. The adsorption of artinM on the surface of nanoparticles was accomplished by electrostatic binding at pH 4, where this process maintained the stability of encapsulated rifampicin. A high proportion of artinM adsorbed on the surface of the nanoparticles shown by haemagglutination assay, zeta potential measurement, and transmission electron microscopy imaging. Cellular uptake revealed by confocal microscopy showed the success in transporting Nile-red labelled nanoparticles across fibroblast cells.Conclusion: The delivery system of nanoparticles bearing artinM becomes a potential platform technology for antibiotic targeting in the treatment of life-threatening chronic diseases caused by intracellular infections.Keywords: surface modification, Box–Behnken design, antibiotic, TLR2 agonists, botanical lectin, electrostatic binding |
format |
article |
author |
Suciati T Nafisa S Nareswari TL Juniatik M Julianti E Wibowo MS Yudhistira T Ihsanawati I Triyani Y Khairurrijal K |
author_facet |
Suciati T Nafisa S Nareswari TL Juniatik M Julianti E Wibowo MS Yudhistira T Ihsanawati I Triyani Y Khairurrijal K |
author_sort |
Suciati T |
title |
ArtinM Grafted Phospholipid Nanoparticles for Enhancing Antibiotic Cellular Uptake Against Intracellular Infection |
title_short |
ArtinM Grafted Phospholipid Nanoparticles for Enhancing Antibiotic Cellular Uptake Against Intracellular Infection |
title_full |
ArtinM Grafted Phospholipid Nanoparticles for Enhancing Antibiotic Cellular Uptake Against Intracellular Infection |
title_fullStr |
ArtinM Grafted Phospholipid Nanoparticles for Enhancing Antibiotic Cellular Uptake Against Intracellular Infection |
title_full_unstemmed |
ArtinM Grafted Phospholipid Nanoparticles for Enhancing Antibiotic Cellular Uptake Against Intracellular Infection |
title_sort |
artinm grafted phospholipid nanoparticles for enhancing antibiotic cellular uptake against intracellular infection |
publisher |
Dove Medical Press |
publishDate |
2020 |
url |
https://doaj.org/article/4d5d841c929e45c1a4df30ac9f4c15d6 |
work_keys_str_mv |
AT suciatit artinmgraftedphospholipidnanoparticlesforenhancingantibioticcellularuptakeagainstintracellularinfection AT nafisas artinmgraftedphospholipidnanoparticlesforenhancingantibioticcellularuptakeagainstintracellularinfection AT nareswaritl artinmgraftedphospholipidnanoparticlesforenhancingantibioticcellularuptakeagainstintracellularinfection AT juniatikm artinmgraftedphospholipidnanoparticlesforenhancingantibioticcellularuptakeagainstintracellularinfection AT juliantie artinmgraftedphospholipidnanoparticlesforenhancingantibioticcellularuptakeagainstintracellularinfection AT wibowoms artinmgraftedphospholipidnanoparticlesforenhancingantibioticcellularuptakeagainstintracellularinfection AT yudhistirat artinmgraftedphospholipidnanoparticlesforenhancingantibioticcellularuptakeagainstintracellularinfection AT ihsanawatii artinmgraftedphospholipidnanoparticlesforenhancingantibioticcellularuptakeagainstintracellularinfection AT triyaniy artinmgraftedphospholipidnanoparticlesforenhancingantibioticcellularuptakeagainstintracellularinfection AT khairurrijalk artinmgraftedphospholipidnanoparticlesforenhancingantibioticcellularuptakeagainstintracellularinfection |
_version_ |
1718392553048375296 |