Metadynamics sampling in atomic environment space for collecting training data for machine learning potentials
Abstract The universal mathematical form of machine-learning potentials (MLPs) shifts the core of development of interatomic potentials to collecting proper training data. Ideally, the training set should encompass diverse local atomic environments but conventional approaches are prone to sampling s...
Guardado en:
Autores principales: | Dongsun Yoo, Jisu Jung, Wonseok Jeong, Seungwu Han |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4d6bf771dd664f17a0d20898685ce07d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Discovering the building blocks of atomic systems using machine learning: application to grain boundaries
por: Conrad W. Rosenbrock, et al.
Publicado: (2017) -
Probing atomic-scale symmetry breaking by rotationally invariant machine learning of multidimensional electron scattering
por: Mark P. Oxley, et al.
Publicado: (2021) -
Ensemble learning-iterative training machine learning for uncertainty quantification and automated experiment in atom-resolved microscopy
por: Ayana Ghosh, et al.
Publicado: (2021) -
Exploring DFT+U parameter space with a Bayesian calibration assisted by Markov chain Monte Carlo sampling
por: Pedram Tavadze, et al.
Publicado: (2021) -
Method for assessing atomic sources of flicker noise in superconducting qubits
por: Almog Reshef, et al.
Publicado: (2021)