Besov-type spaces for the κ-Hankel wavelet transform on the real line

In this paper, we shall introduce functions spaces as subspaces of Lpκ (ℝ) that we call Besov-κ-Hankel spaces and extend the concept of κ-Hankel wavelet transform in Lpκ(ℝ) space. Subsequently we will characterize the Besov-κ-Hankel space by using κ-Hankel wavelet coefficients.

Guardado en:
Detalles Bibliográficos
Autores principales: Pathak Ashish, Pandey Shrish
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/4d7098f735384e42a00734b6531eafa3
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4d7098f735384e42a00734b6531eafa3
record_format dspace
spelling oai:doaj.org-article:4d7098f735384e42a00734b6531eafa32021-12-05T14:10:45ZBesov-type spaces for the κ-Hankel wavelet transform on the real line2299-328210.1515/conop-2020-0117https://doaj.org/article/4d7098f735384e42a00734b6531eafa32021-08-01T00:00:00Zhttps://doi.org/10.1515/conop-2020-0117https://doaj.org/toc/2299-3282In this paper, we shall introduce functions spaces as subspaces of Lpκ (ℝ) that we call Besov-κ-Hankel spaces and extend the concept of κ-Hankel wavelet transform in Lpκ(ℝ) space. Subsequently we will characterize the Besov-κ-Hankel space by using κ-Hankel wavelet coefficients.Pathak AshishPandey ShrishDe Gruyterarticlebesov κ -hankel spacecontinuous κ -hankel wavelet transformκ -hankel transformκ -hankel convolution33a4044a0542c40MathematicsQA1-939ENConcrete Operators, Vol 8, Iss 1, Pp 114-124 (2021)
institution DOAJ
collection DOAJ
language EN
topic besov κ -hankel space
continuous κ -hankel wavelet transform
κ -hankel transform
κ -hankel convolution
33a40
44a05
42c40
Mathematics
QA1-939
spellingShingle besov κ -hankel space
continuous κ -hankel wavelet transform
κ -hankel transform
κ -hankel convolution
33a40
44a05
42c40
Mathematics
QA1-939
Pathak Ashish
Pandey Shrish
Besov-type spaces for the κ-Hankel wavelet transform on the real line
description In this paper, we shall introduce functions spaces as subspaces of Lpκ (ℝ) that we call Besov-κ-Hankel spaces and extend the concept of κ-Hankel wavelet transform in Lpκ(ℝ) space. Subsequently we will characterize the Besov-κ-Hankel space by using κ-Hankel wavelet coefficients.
format article
author Pathak Ashish
Pandey Shrish
author_facet Pathak Ashish
Pandey Shrish
author_sort Pathak Ashish
title Besov-type spaces for the κ-Hankel wavelet transform on the real line
title_short Besov-type spaces for the κ-Hankel wavelet transform on the real line
title_full Besov-type spaces for the κ-Hankel wavelet transform on the real line
title_fullStr Besov-type spaces for the κ-Hankel wavelet transform on the real line
title_full_unstemmed Besov-type spaces for the κ-Hankel wavelet transform on the real line
title_sort besov-type spaces for the κ-hankel wavelet transform on the real line
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/4d7098f735384e42a00734b6531eafa3
work_keys_str_mv AT pathakashish besovtypespacesforthekhankelwavelettransformontherealline
AT pandeyshrish besovtypespacesforthekhankelwavelettransformontherealline
_version_ 1718371761505959936