Besov-type spaces for the κ-Hankel wavelet transform on the real line
In this paper, we shall introduce functions spaces as subspaces of Lpκ (ℝ) that we call Besov-κ-Hankel spaces and extend the concept of κ-Hankel wavelet transform in Lpκ(ℝ) space. Subsequently we will characterize the Besov-κ-Hankel space by using κ-Hankel wavelet coefficients.
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4d7098f735384e42a00734b6531eafa3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:4d7098f735384e42a00734b6531eafa3 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:4d7098f735384e42a00734b6531eafa32021-12-05T14:10:45ZBesov-type spaces for the κ-Hankel wavelet transform on the real line2299-328210.1515/conop-2020-0117https://doaj.org/article/4d7098f735384e42a00734b6531eafa32021-08-01T00:00:00Zhttps://doi.org/10.1515/conop-2020-0117https://doaj.org/toc/2299-3282In this paper, we shall introduce functions spaces as subspaces of Lpκ (ℝ) that we call Besov-κ-Hankel spaces and extend the concept of κ-Hankel wavelet transform in Lpκ(ℝ) space. Subsequently we will characterize the Besov-κ-Hankel space by using κ-Hankel wavelet coefficients.Pathak AshishPandey ShrishDe Gruyterarticlebesov κ -hankel spacecontinuous κ -hankel wavelet transformκ -hankel transformκ -hankel convolution33a4044a0542c40MathematicsQA1-939ENConcrete Operators, Vol 8, Iss 1, Pp 114-124 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
besov κ -hankel space continuous κ -hankel wavelet transform κ -hankel transform κ -hankel convolution 33a40 44a05 42c40 Mathematics QA1-939 |
spellingShingle |
besov κ -hankel space continuous κ -hankel wavelet transform κ -hankel transform κ -hankel convolution 33a40 44a05 42c40 Mathematics QA1-939 Pathak Ashish Pandey Shrish Besov-type spaces for the κ-Hankel wavelet transform on the real line |
description |
In this paper, we shall introduce functions spaces as subspaces of Lpκ (ℝ) that we call Besov-κ-Hankel spaces and extend the concept of κ-Hankel wavelet transform in Lpκ(ℝ) space. Subsequently we will characterize the Besov-κ-Hankel space by using κ-Hankel wavelet coefficients. |
format |
article |
author |
Pathak Ashish Pandey Shrish |
author_facet |
Pathak Ashish Pandey Shrish |
author_sort |
Pathak Ashish |
title |
Besov-type spaces for the κ-Hankel wavelet transform on the real line |
title_short |
Besov-type spaces for the κ-Hankel wavelet transform on the real line |
title_full |
Besov-type spaces for the κ-Hankel wavelet transform on the real line |
title_fullStr |
Besov-type spaces for the κ-Hankel wavelet transform on the real line |
title_full_unstemmed |
Besov-type spaces for the κ-Hankel wavelet transform on the real line |
title_sort |
besov-type spaces for the κ-hankel wavelet transform on the real line |
publisher |
De Gruyter |
publishDate |
2021 |
url |
https://doaj.org/article/4d7098f735384e42a00734b6531eafa3 |
work_keys_str_mv |
AT pathakashish besovtypespacesforthekhankelwavelettransformontherealline AT pandeyshrish besovtypespacesforthekhankelwavelettransformontherealline |
_version_ |
1718371761505959936 |