Remote Sensing Image Scene Classification Based on Global Self-Attention Module
The complexity of scene images makes the research on remote-sensing image scene classification challenging. With the wide application of deep learning in recent years, many remote-sensing scene classification methods using a convolutional neural network (CNN) have emerged. Current CNN usually output...
Guardado en:
Autores principales: | Qingwen Li, Dongmei Yan, Wanrong Wu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4d717f820e474328b343a656b62df52c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Remote Sensing Scene Image Classification Based on Dense Fusion of Multi-level Features
por: Cuiping Shi, et al.
Publicado: (2021) -
Attention_FPNet: Two-Branch Remote Sensing Image Pansharpening Network Based on Attention Feature Fusion
por: Xiwu Zhong, et al.
Publicado: (2021) -
Task-Adaptive Embedding Learning with Dynamic Kernel Fusion for Few-Shot Remote Sensing Scene Classification
por: Pei Zhang, et al.
Publicado: (2021) -
Learning to Identify Illegal Landfills through Scene Classification in Aerial Images
por: Rocio Nahime Torres, et al.
Publicado: (2021) -
Improved Oriented Object Detection in Remote Sensing Images Based on a Three-Point Regression Method
por: Falin Wu, et al.
Publicado: (2021)