Privacy-Preserving High-dimensional Data Collection with Federated Generative Autoencoder
Business intelligence and AI services often involve the collection of copious amounts of multidimensional personal data. Since these data usually contain sensitive information of individuals, the direct collection can lead to privacy violations. Local differential privacy (LDP) is currently consider...
Guardado en:
Autores principales: | Jiang Xue, Zhou Xuebing, Grossklags Jens |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Sciendo
2022
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4d7e219b1a474b8e87438097c4846f50 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Making the Most of Parallel Composition in Differential Privacy
por: Smith Josh, et al.
Publicado: (2022) -
Privacy-preserving FairSwap: Fairness and privacy interplay
por: Avizheh Sepideh, et al.
Publicado: (2022) -
Differentially private partition selection
por: Desfontaines Damien, et al.
Publicado: (2022) -
Ulixes: Facial Recognition Privacy with Adversarial Machine Learning
por: Cilloni Thomas, et al.
Publicado: (2022) -
The Effectiveness of Adaptation Methods in Improving User Engagement and Privacy Protection on Social Network Sites
por: Namara Moses, et al.
Publicado: (2022)