Controls on eDNA movement in streams: Transport, Retention, and Resuspension

Abstract Advances in detection of genetic material from species in aquatic ecosystems, including environmental DNA (eDNA), have improved species monitoring and management. eDNA from target species can readily move in streams and rivers and the goal is to measure it, and with that infer where and how...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Arial J. Shogren, Jennifer L. Tank, Elizabeth Andruszkiewicz, Brett Olds, Andrew R. Mahon, Christopher L. Jerde, Diogo Bolster
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/4d8f8032b7134ee79ece8c83182de85c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Advances in detection of genetic material from species in aquatic ecosystems, including environmental DNA (eDNA), have improved species monitoring and management. eDNA from target species can readily move in streams and rivers and the goal is to measure it, and with that infer where and how abundant species are, adding great value to delimiting species invasions, monitoring and protecting rare species, and estimating biodiversity. To date, we lack an integrated framework that identifies environmental factors that control eDNA movement in realistic, complex, and heterogeneous flowing waters. To this end, using an empirical approach and a simple conceptual model, we propose a framework of how eDNA is transported, retained, and resuspended in stream systems. Such an understanding of eDNA dispersal in streams will be essential for designing optimized sampling protocols and subsequently estimating biomass or organismal abundance. We also discuss guiding principles for more effective use of eDNA methods, highlighting the necessity of understanding these parameters for use in future predictive modeling of eDNA transport.