Embodied intelligence via learning and evolution

The authors propose a new framework, deep evolutionary reinforcement learning, evolves agents with diverse morphologies to learn hard locomotion and manipulation tasks in complex environments, and reveals insights into relations between environmental physics, embodied intelligence, and the evolution...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Agrim Gupta, Silvio Savarese, Surya Ganguli, Li Fei-Fei
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/4dd31838732842439cc1301e52613d1c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The authors propose a new framework, deep evolutionary reinforcement learning, evolves agents with diverse morphologies to learn hard locomotion and manipulation tasks in complex environments, and reveals insights into relations between environmental physics, embodied intelligence, and the evolution of rapid learning.