Putting machine learning to use in natural resource management - improving model performance
Machine learning models have proven to be very successful in many fields of research. Yet, in natural resource management, modeling with algorithms such as gradient boosting or artificial neural networks is virtually nonexistent. The current state of research on existing applications of machine lear...
Guardado en:
Autor principal: | Ulrich J. Frey |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Resilience Alliance
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4dd39f2766b3446a807ca5e568d2cb28 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Predicting the number of dusty days around the desert wetlands in southeastern Iran using feature selection and machine learning techniques
por: Zohre Ebrahimi-Khusfi, et al.
Publicado: (2021) -
Incorporation of high accuracy surface modeling into machine learning to improve soil organic matter mapping
por: Zong Wang, et al.
Publicado: (2021) -
Expanding NEON biodiversity surveys with new instrumentation and machine learning approaches
por: Justin Kitzes, et al.
Publicado: (2021) -
Corrigendum to “A linear additivity water resources assessment indicator by combining water quantity and water quality” [Ecol. Indic. 121 (2020) 106990]
por: Xiaoran Cao, et al.
Publicado: (2021) -
Spatiotemporal variation of agroecosystem service trade-offs and its driving factors across different climate zones
por: Menglong Qiu, et al.
Publicado: (2021)