Laser-induced layers peeling of sputtering coatings at 1064 nm wavelength
Abstract Large-scale layers peeling after the laser irradiation of dual ion beam sputtering coatings is discovered and a model is established to explain it. The laser damage morphologies relate to the laser fluence, showing thermomechanical coupling failure at low energy and coating layers separatio...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4ddd5833de724817879d612e2043d0c7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Large-scale layers peeling after the laser irradiation of dual ion beam sputtering coatings is discovered and a model is established to explain it. The laser damage morphologies relate to the laser fluence, showing thermomechanical coupling failure at low energy and coating layers separation at high energy. High-pressure gradients appear in the interaction between laser and coatings, resulting in large-scale layer separation. A two-step laser damage model including defect-induced damage process and ionized air wave damage process is proposed to explain the two phenomena at different energy. At relatively high energies (higher than 20 J/cm2), ionization of the air can be initiated, leading to a peeling off effect. The peeling effect is related to the thermomechanical properties of the coating materials. |
---|