Antihyperglycemic Activity of TLC Isolates from the Leaves of Aloe megalacantha Baker in Streptozotocin-Induced Diabetic Mice

Tsgabu Yohannes Araya,1 Aman Karim,2 Gebremedhin Solomon Hailu,1 Gomathi Periasamy,2 Getu Kahsay3 1Department of Medicinal Chemistry, School of Pharmacy, Mekelle University, Mekelle, Ethiopia; 2Department of Pharmacognosy, School of Pharmacy, Mekelle University, Mekelle, Ethiopia; 3Department of Pha...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Araya TY, Karim A, Hailu GS, Periasamy G, Kahsay G
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2021
Materias:
Acceso en línea:https://doaj.org/article/4de236d1044d4ca390454f60369339af
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Tsgabu Yohannes Araya,1 Aman Karim,2 Gebremedhin Solomon Hailu,1 Gomathi Periasamy,2 Getu Kahsay3 1Department of Medicinal Chemistry, School of Pharmacy, Mekelle University, Mekelle, Ethiopia; 2Department of Pharmacognosy, School of Pharmacy, Mekelle University, Mekelle, Ethiopia; 3Department of Pharmaceutical Analysis and Quality Assurance, School of Pharmacy, Mekelle University, Mekelle, EthiopiaCorrespondence: Getu KahsayDepartment of Pharmaceutical Analysis and Quality Assurance, School of Pharmacy, Mekelle University, P.O. Box 1871, Mekelle, EthiopiaFax +251 34 441 6681Email weldugetu@mu.edu.etBackground: Diabetes mellitus (DM) is a group of metabolic disorders that are characterized by hyperglycemia which results from defects in insulin release or its efficient use by the human body. Although significant progress has been made to manage DM and related complications, it remains a major global health problem. To this end, the search for new antidiabetic drugs from traditionally claimed medicinal plants is important. Aloe megalacantha Baker is an endemic plant used traditionally to treat diabetes in Ethiopia. This study aimed to investigate antidiabetic activity of isolates from the leaf of A. megalacantha Baker in streptozotocin-induced diabetic mice.Methods: The exudate of A. megalacantha was collected by cutting the leaves and scraping the yellow sap and then dried at room temperature. The dried exudate was subjected to repeated thin layer chromatographic (TLC) separations using a mixture of solvent system to isolate the major compounds identified on the TLC plate. A single dose of streptozotocin (50 mg/kg) was injected intraperitoneally to overnight fasted mice to induce diabetes. Antidiabetic activity of TLC isolates was assessed by in vivo methods including oral glucose tolerance test, antihyperglycemic and hypoglycemic activity tests.Results: Three major isolates were obtained from the TLC analysis of the exudate of A. megalacantha. Exudate and TLC isolates were found to be non-toxic up to a dose of 2000 mg/kg. The TLC isolates (Ia and Ib) significantly (p< 0.05) reduced blood glucose levels and also increased body weight change of the diabetic mice compared with control groups.Conclusion: The present study demonstrated the ability of the exudate of A. megalacantha and its TLC isolates to significantly decrease blood glucose levels and increase body weights in mice, thus strengthening the claim of its traditional use in DM-related disorders.Keywords: diabetes, antidiabetic, Aloe megalacantha Baker, streptozotocin, thin layer chromatography