Netflow Python library – A free software tool for the generation and analysis of pore or flow networks

State-of-the-art tomographic scanning techniques provide detailed pore-space geometries of natural porous media, which are central for the study of subsurface flow and transport. Due to experimental and computational limitations, the extraction of high-resolution images is limited to relatively smal...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Daniel W. Meyer
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/4de3a0b3451e457cbaae660d63b01784
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4de3a0b3451e457cbaae660d63b01784
record_format dspace
spelling oai:doaj.org-article:4de3a0b3451e457cbaae660d63b017842021-11-28T04:32:31ZNetflow Python library – A free software tool for the generation and analysis of pore or flow networks2215-016110.1016/j.mex.2021.101592https://doaj.org/article/4de3a0b3451e457cbaae660d63b017842021-01-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2215016121003824https://doaj.org/toc/2215-0161State-of-the-art tomographic scanning techniques provide detailed pore-space geometries of natural porous media, which are central for the study of subsurface flow and transport. Due to experimental and computational limitations, the extraction of high-resolution images is limited to relatively small sample volumes. To reduce the amount of data and the physical complexity, pore-space geometries are routinely translated into pore network models. Subsequently, such networks are expanded in space with suitable computational methods to determine effective medium parameters at larger scales relevant in engineering applications. While existing methods can provide networks with effective flow parameters being consistent with experimental data for comparably homogeneous media such as bead packs and sandstones, these methods are inadequate for more complex heterogeneous rocks such as carbonates or become too expensive for large networks. The netflow Python library accompanying this paper extends existing methods by preserving pore clusters that are a key characteristic of heterogeneous rocks. To this end dendrograms are extracted from experimental data and perturbed when generating larger networks. Moreover, the methods included in the netflow library are implemented in computationally efficient ways and enable the generation of large periodic networks that virtually eliminate boundary effects, which interfere in existing methods.• The netflow Python library enables the generation of large irregular networks, as it preserves pore or node clusters which are present in certain natural rock types.• The netflow Python library allows for the generation and flow analysis of boundary-free periodic networks. It further includes methods to convert periodic networks into conventional cubical ones.Daniel W. MeyerElsevierarticleDendrogramClusterHeterogeneityConnectivityPorous mediaPathwayScienceQENMethodsX, Vol 8, Iss , Pp 101592- (2021)
institution DOAJ
collection DOAJ
language EN
topic Dendrogram
Cluster
Heterogeneity
Connectivity
Porous media
Pathway
Science
Q
spellingShingle Dendrogram
Cluster
Heterogeneity
Connectivity
Porous media
Pathway
Science
Q
Daniel W. Meyer
Netflow Python library – A free software tool for the generation and analysis of pore or flow networks
description State-of-the-art tomographic scanning techniques provide detailed pore-space geometries of natural porous media, which are central for the study of subsurface flow and transport. Due to experimental and computational limitations, the extraction of high-resolution images is limited to relatively small sample volumes. To reduce the amount of data and the physical complexity, pore-space geometries are routinely translated into pore network models. Subsequently, such networks are expanded in space with suitable computational methods to determine effective medium parameters at larger scales relevant in engineering applications. While existing methods can provide networks with effective flow parameters being consistent with experimental data for comparably homogeneous media such as bead packs and sandstones, these methods are inadequate for more complex heterogeneous rocks such as carbonates or become too expensive for large networks. The netflow Python library accompanying this paper extends existing methods by preserving pore clusters that are a key characteristic of heterogeneous rocks. To this end dendrograms are extracted from experimental data and perturbed when generating larger networks. Moreover, the methods included in the netflow library are implemented in computationally efficient ways and enable the generation of large periodic networks that virtually eliminate boundary effects, which interfere in existing methods.• The netflow Python library enables the generation of large irregular networks, as it preserves pore or node clusters which are present in certain natural rock types.• The netflow Python library allows for the generation and flow analysis of boundary-free periodic networks. It further includes methods to convert periodic networks into conventional cubical ones.
format article
author Daniel W. Meyer
author_facet Daniel W. Meyer
author_sort Daniel W. Meyer
title Netflow Python library – A free software tool for the generation and analysis of pore or flow networks
title_short Netflow Python library – A free software tool for the generation and analysis of pore or flow networks
title_full Netflow Python library – A free software tool for the generation and analysis of pore or flow networks
title_fullStr Netflow Python library – A free software tool for the generation and analysis of pore or flow networks
title_full_unstemmed Netflow Python library – A free software tool for the generation and analysis of pore or flow networks
title_sort netflow python library – a free software tool for the generation and analysis of pore or flow networks
publisher Elsevier
publishDate 2021
url https://doaj.org/article/4de3a0b3451e457cbaae660d63b01784
work_keys_str_mv AT danielwmeyer netflowpythonlibraryafreesoftwaretoolforthegenerationandanalysisofporeorflownetworks
_version_ 1718408314419675136