Fibromodulin is involved in autophagy and apoptosis of granulosa cells affecting the follicular atresia in chicken
ABSTRACT: Follicular atresia is an important cause of reproductive decline in egg-laying hens. Therefore, a better understanding of the regulation mechanism of follicle atresia in poultry is an important measure to maintain persistent high egg performance. However, how the role of the regulatory rel...
Guardado en:
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4de697785dca46ae88d5c89b3fdc0532 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:4de697785dca46ae88d5c89b3fdc0532 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:4de697785dca46ae88d5c89b3fdc05322021-11-16T04:09:03ZFibromodulin is involved in autophagy and apoptosis of granulosa cells affecting the follicular atresia in chicken0032-579110.1016/j.psj.2021.101524https://doaj.org/article/4de697785dca46ae88d5c89b3fdc05322022-01-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S0032579121005460https://doaj.org/toc/0032-5791ABSTRACT: Follicular atresia is an important cause of reproductive decline in egg-laying hens. Therefore, a better understanding of the regulation mechanism of follicle atresia in poultry is an important measure to maintain persistent high egg performance. However, how the role of the regulatory relationship between autophagy and apoptosis in the intrafollicular environment affects the follicular atresia of chickens is remain unclear. The objective of this study was to explore the regulatory molecular mechanisms in regard to follicular atresia. 20 white leghorn layers (32-wk-old) were equally divided into 2 groups. The control group was fed freely, and the experimental group induced follicular atretic by fasting for 5 d. The results showed that the expression of prolactin (PRL) levels was significantly higher in the fasted hens, while the levels of luteinizing hormone (LH) and follicle stimulating hormone (FSH) were lower. Most importantly, RNA sequencing, qPCR, and Western blotting detected significantly elevated levels of autophagy and apoptosis markers in atresia follicles. Interestingly, we found that fibromodulin (FMOD) levels was significantly lower in follicles from fasted hens and that this molecule had an important regulatory role in autophagy. FMOD silencing significantly promoted autophagy and apoptosis in granulosa cells, resulting in hormonal imbalance. FMOD was found to regulate autophagy via the transforming growth factor beta (TGF-β) signaling pathway. Our results suggest that the increase in autophagy and the imbalance in internal homeostasis cause granulosa cell apoptosis, leading to follicular atresia in the chicken ovary. This finding could provide further insight into broodiness in chicken and provide avenues for further improvements in poultry production.Shunshun HanJianping WangCan CuiChunlin YuYao ZhangDiyan LiMenggen MaHuarui DuXiaosong JiangQing ZhuChaowu YangHuadong YinElsevierarticleautophagyapoptosisfollicle atresiagranulosa cellchickenAnimal cultureSF1-1100ENPoultry Science, Vol 101, Iss 1, Pp 101524- (2022) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
autophagy apoptosis follicle atresia granulosa cell chicken Animal culture SF1-1100 |
spellingShingle |
autophagy apoptosis follicle atresia granulosa cell chicken Animal culture SF1-1100 Shunshun Han Jianping Wang Can Cui Chunlin Yu Yao Zhang Diyan Li Menggen Ma Huarui Du Xiaosong Jiang Qing Zhu Chaowu Yang Huadong Yin Fibromodulin is involved in autophagy and apoptosis of granulosa cells affecting the follicular atresia in chicken |
description |
ABSTRACT: Follicular atresia is an important cause of reproductive decline in egg-laying hens. Therefore, a better understanding of the regulation mechanism of follicle atresia in poultry is an important measure to maintain persistent high egg performance. However, how the role of the regulatory relationship between autophagy and apoptosis in the intrafollicular environment affects the follicular atresia of chickens is remain unclear. The objective of this study was to explore the regulatory molecular mechanisms in regard to follicular atresia. 20 white leghorn layers (32-wk-old) were equally divided into 2 groups. The control group was fed freely, and the experimental group induced follicular atretic by fasting for 5 d. The results showed that the expression of prolactin (PRL) levels was significantly higher in the fasted hens, while the levels of luteinizing hormone (LH) and follicle stimulating hormone (FSH) were lower. Most importantly, RNA sequencing, qPCR, and Western blotting detected significantly elevated levels of autophagy and apoptosis markers in atresia follicles. Interestingly, we found that fibromodulin (FMOD) levels was significantly lower in follicles from fasted hens and that this molecule had an important regulatory role in autophagy. FMOD silencing significantly promoted autophagy and apoptosis in granulosa cells, resulting in hormonal imbalance. FMOD was found to regulate autophagy via the transforming growth factor beta (TGF-β) signaling pathway. Our results suggest that the increase in autophagy and the imbalance in internal homeostasis cause granulosa cell apoptosis, leading to follicular atresia in the chicken ovary. This finding could provide further insight into broodiness in chicken and provide avenues for further improvements in poultry production. |
format |
article |
author |
Shunshun Han Jianping Wang Can Cui Chunlin Yu Yao Zhang Diyan Li Menggen Ma Huarui Du Xiaosong Jiang Qing Zhu Chaowu Yang Huadong Yin |
author_facet |
Shunshun Han Jianping Wang Can Cui Chunlin Yu Yao Zhang Diyan Li Menggen Ma Huarui Du Xiaosong Jiang Qing Zhu Chaowu Yang Huadong Yin |
author_sort |
Shunshun Han |
title |
Fibromodulin is involved in autophagy and apoptosis of granulosa cells affecting the follicular atresia in chicken |
title_short |
Fibromodulin is involved in autophagy and apoptosis of granulosa cells affecting the follicular atresia in chicken |
title_full |
Fibromodulin is involved in autophagy and apoptosis of granulosa cells affecting the follicular atresia in chicken |
title_fullStr |
Fibromodulin is involved in autophagy and apoptosis of granulosa cells affecting the follicular atresia in chicken |
title_full_unstemmed |
Fibromodulin is involved in autophagy and apoptosis of granulosa cells affecting the follicular atresia in chicken |
title_sort |
fibromodulin is involved in autophagy and apoptosis of granulosa cells affecting the follicular atresia in chicken |
publisher |
Elsevier |
publishDate |
2022 |
url |
https://doaj.org/article/4de697785dca46ae88d5c89b3fdc0532 |
work_keys_str_mv |
AT shunshunhan fibromodulinisinvolvedinautophagyandapoptosisofgranulosacellsaffectingthefollicularatresiainchicken AT jianpingwang fibromodulinisinvolvedinautophagyandapoptosisofgranulosacellsaffectingthefollicularatresiainchicken AT cancui fibromodulinisinvolvedinautophagyandapoptosisofgranulosacellsaffectingthefollicularatresiainchicken AT chunlinyu fibromodulinisinvolvedinautophagyandapoptosisofgranulosacellsaffectingthefollicularatresiainchicken AT yaozhang fibromodulinisinvolvedinautophagyandapoptosisofgranulosacellsaffectingthefollicularatresiainchicken AT diyanli fibromodulinisinvolvedinautophagyandapoptosisofgranulosacellsaffectingthefollicularatresiainchicken AT menggenma fibromodulinisinvolvedinautophagyandapoptosisofgranulosacellsaffectingthefollicularatresiainchicken AT huaruidu fibromodulinisinvolvedinautophagyandapoptosisofgranulosacellsaffectingthefollicularatresiainchicken AT xiaosongjiang fibromodulinisinvolvedinautophagyandapoptosisofgranulosacellsaffectingthefollicularatresiainchicken AT qingzhu fibromodulinisinvolvedinautophagyandapoptosisofgranulosacellsaffectingthefollicularatresiainchicken AT chaowuyang fibromodulinisinvolvedinautophagyandapoptosisofgranulosacellsaffectingthefollicularatresiainchicken AT huadongyin fibromodulinisinvolvedinautophagyandapoptosisofgranulosacellsaffectingthefollicularatresiainchicken |
_version_ |
1718426784016367616 |