Bottom-up fabrication of zwitterionic polymer brushes on intraocular lens for improved biocompatibility

Yuemei Han,1,* Xu Xu,1,* Junmei Tang,1,* Chenghui Shen,2 Quankui Lin,1,2 Hao Chen1,2 1School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 2Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, People’s Republic of China...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Han Y, Xu X, Tang J, Shen C, Lin Q, Chen H
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2016
Materias:
PCO
Acceso en línea:https://doaj.org/article/4df29ca4da114c528dfa90b6aadc0105
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Yuemei Han,1,* Xu Xu,1,* Junmei Tang,1,* Chenghui Shen,2 Quankui Lin,1,2 Hao Chen1,2 1School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 2Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, People’s Republic of China *These authors contributed equally to this work Abstract: Intraocular lens (IOL) is an efficient implantable device commonly used for treating cataracts. However, bioadhesion of bacteria or residual lens epithelial cells on the IOL surface after surgery causes postoperative complications, such as endophthalmitis or posterior capsular opacification, and leads to loss of sight again. In the present study, zwitterionic polymer brushes were fabricated on the IOL surface via bottom-up grafting procedure. The attenuated total reflection-Fourier transform infrared and contact angle measurements indicated successful surface modification, as well as excellent hydrophilicity. The coating of hydrophilic zwitterionic polymer effectively decreased the bioadhesion of lens epithelial cells or bacteria. In vivo intraocular implantation results showed good in vivo biocompatibility of zwitterionic IOL and its effectiveness against postoperative complications. Keywords: RAFT, surface modification, endophthalmitis, PCO, in vivo