EEG and behavioral correlates of attentional processing while walking and navigating naturalistic environments
Abstract The capacity to regulate one’s attention in accordance with fluctuating task demands and environmental contexts is an essential feature of adaptive behavior. Although the electrophysiological correlates of attentional processing have been extensively studied in the laboratory, relatively li...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4e017d53de6e4297bc4e0ab34b8a6c33 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:4e017d53de6e4297bc4e0ab34b8a6c33 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:4e017d53de6e4297bc4e0ab34b8a6c332021-11-21T12:17:02ZEEG and behavioral correlates of attentional processing while walking and navigating naturalistic environments10.1038/s41598-021-01772-82045-2322https://doaj.org/article/4e017d53de6e4297bc4e0ab34b8a6c332021-11-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-01772-8https://doaj.org/toc/2045-2322Abstract The capacity to regulate one’s attention in accordance with fluctuating task demands and environmental contexts is an essential feature of adaptive behavior. Although the electrophysiological correlates of attentional processing have been extensively studied in the laboratory, relatively little is known about the way they unfold under more variable, ecologically-valid conditions. Accordingly, this study employed a ‘real-world’ EEG design to investigate how attentional processing varies under increasing cognitive, motor, and environmental demands. Forty-four participants were exposed to an auditory oddball task while (1) sitting in a quiet room inside the lab, (2) walking around a sports field, and (3) wayfinding across a university campus. In each condition, participants were instructed to either count or ignore oddball stimuli. While behavioral performance was similar across the lab and field conditions, oddball count accuracy was significantly reduced in the campus condition. Moreover, event-related potential components (mismatch negativity and P3) elicited in both ‘real-world’ settings differed significantly from those obtained under laboratory conditions. These findings demonstrate the impact of environmental factors on attentional processing during simultaneously-performed motor and cognitive tasks, highlighting the value of incorporating dynamic and unpredictable contexts within naturalistic designs.Magnus LiebherrAndrew W. CorcoranPhillip M. AldayScott CoussensValeria BellanCaitlin A. HowlettMaarten A. ImminkMark KohlerMatthias SchlesewskyIna Bornkessel-SchlesewskyNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-13 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Magnus Liebherr Andrew W. Corcoran Phillip M. Alday Scott Coussens Valeria Bellan Caitlin A. Howlett Maarten A. Immink Mark Kohler Matthias Schlesewsky Ina Bornkessel-Schlesewsky EEG and behavioral correlates of attentional processing while walking and navigating naturalistic environments |
description |
Abstract The capacity to regulate one’s attention in accordance with fluctuating task demands and environmental contexts is an essential feature of adaptive behavior. Although the electrophysiological correlates of attentional processing have been extensively studied in the laboratory, relatively little is known about the way they unfold under more variable, ecologically-valid conditions. Accordingly, this study employed a ‘real-world’ EEG design to investigate how attentional processing varies under increasing cognitive, motor, and environmental demands. Forty-four participants were exposed to an auditory oddball task while (1) sitting in a quiet room inside the lab, (2) walking around a sports field, and (3) wayfinding across a university campus. In each condition, participants were instructed to either count or ignore oddball stimuli. While behavioral performance was similar across the lab and field conditions, oddball count accuracy was significantly reduced in the campus condition. Moreover, event-related potential components (mismatch negativity and P3) elicited in both ‘real-world’ settings differed significantly from those obtained under laboratory conditions. These findings demonstrate the impact of environmental factors on attentional processing during simultaneously-performed motor and cognitive tasks, highlighting the value of incorporating dynamic and unpredictable contexts within naturalistic designs. |
format |
article |
author |
Magnus Liebherr Andrew W. Corcoran Phillip M. Alday Scott Coussens Valeria Bellan Caitlin A. Howlett Maarten A. Immink Mark Kohler Matthias Schlesewsky Ina Bornkessel-Schlesewsky |
author_facet |
Magnus Liebherr Andrew W. Corcoran Phillip M. Alday Scott Coussens Valeria Bellan Caitlin A. Howlett Maarten A. Immink Mark Kohler Matthias Schlesewsky Ina Bornkessel-Schlesewsky |
author_sort |
Magnus Liebherr |
title |
EEG and behavioral correlates of attentional processing while walking and navigating naturalistic environments |
title_short |
EEG and behavioral correlates of attentional processing while walking and navigating naturalistic environments |
title_full |
EEG and behavioral correlates of attentional processing while walking and navigating naturalistic environments |
title_fullStr |
EEG and behavioral correlates of attentional processing while walking and navigating naturalistic environments |
title_full_unstemmed |
EEG and behavioral correlates of attentional processing while walking and navigating naturalistic environments |
title_sort |
eeg and behavioral correlates of attentional processing while walking and navigating naturalistic environments |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/4e017d53de6e4297bc4e0ab34b8a6c33 |
work_keys_str_mv |
AT magnusliebherr eegandbehavioralcorrelatesofattentionalprocessingwhilewalkingandnavigatingnaturalisticenvironments AT andrewwcorcoran eegandbehavioralcorrelatesofattentionalprocessingwhilewalkingandnavigatingnaturalisticenvironments AT phillipmalday eegandbehavioralcorrelatesofattentionalprocessingwhilewalkingandnavigatingnaturalisticenvironments AT scottcoussens eegandbehavioralcorrelatesofattentionalprocessingwhilewalkingandnavigatingnaturalisticenvironments AT valeriabellan eegandbehavioralcorrelatesofattentionalprocessingwhilewalkingandnavigatingnaturalisticenvironments AT caitlinahowlett eegandbehavioralcorrelatesofattentionalprocessingwhilewalkingandnavigatingnaturalisticenvironments AT maartenaimmink eegandbehavioralcorrelatesofattentionalprocessingwhilewalkingandnavigatingnaturalisticenvironments AT markkohler eegandbehavioralcorrelatesofattentionalprocessingwhilewalkingandnavigatingnaturalisticenvironments AT matthiasschlesewsky eegandbehavioralcorrelatesofattentionalprocessingwhilewalkingandnavigatingnaturalisticenvironments AT inabornkesselschlesewsky eegandbehavioralcorrelatesofattentionalprocessingwhilewalkingandnavigatingnaturalisticenvironments |
_version_ |
1718419062609936384 |