BABEL: using deep learning to translate between single-cell datasets
Recent advances in sequencing and barcoding technologies have enabled researchers to simultaneously profile gene expression, chromatin accessibility, and/or protein levels in single cells. However, these multiomic techniques often pose technical and financial barriers that limit their practicality....
Guardado en:
Autor principal: | George Andrew S. Inglis |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4e0b2ba8f4ed4bae8a12fec4eec6f3c5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Cell-level metadata are indispensable for documenting single-cell sequencing datasets.
por: Sidhant Puntambekar, et al.
Publicado: (2021) -
Bacteria in tree bark are hungry for methane
por: George Andrew S. Inglis
Publicado: (2021) -
Shrinking the metabolic solution space using experimental datasets.
por: Jennifer L Reed
Publicado: (2012) -
The in vitro micronucleus assay using imaging flow cytometry and deep learning
por: Matthew A. Rodrigues, et al.
Publicado: (2021) -
DeepG4: A deep learning approach to predict cell-type specific active G-quadruplex regions.
por: Vincent Rocher, et al.
Publicado: (2021)